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ABSYRA('T 

The main problem investigated in this paper is thal of restricted invertibility of 
linear operators acting on finite dimensional /~,-spaces. Our initial motivation lo 
study such questions lies in their applications. The results obtained below 
enable us to complete earlier work on the structure of complemented subspaces 
of L,,-spaces which have extremal euclidean distance. 

Let A be a real n × n matrix considered as a linear operator on I;',; 1 ~- p ~< r.. 
By restricted invertibility of A, wc mean the existence of a subset (r of 
{ 1,2 . . . . .  n } such that !o- ] ~- n and A acts as tin isomorphism when restricted to 
the linear span of the unit vectors {e,} ..... "llacrc are various conditions undcr 
which this property holds. For instance, if the norm 1] A lip of A is bounded by a 
constant independent of n and the diagonal of A is the identity matrix, then 
there exists an index set m 10-I -- n, for which R,,A,I~,],~,, has a bounded inverse 
(R, stands for the restriction map). This is achieved by simply constructing the 
set (r so that ]]R.(A - z ) / + l l ,  <'=.  

The case p = 2 is of particular interest. Although the problem is purely 
tlilbertian, thc proofs inwflve besides the space I~ also the space /,. The 
methods are probabilistic and combinatorial. ('rucial use is made of Grothen- 
dieck's theorem. 

The paper also contains a nice application to the behavior of the trigonomet- 
ric system on sets of positive measure, generalizing results on harmonic density. 
Given a sunset B of the circle T of positive Lebesguc measure, there exists a 
sunset .at of the integers Z of positive density dens A --> 0 such that 

Ifl=du >cUll;, 

whenever the support of the Fourier transform )? of f lies in A. The matrices 
involved here are Laurent matrices. 

The problem of restricted invertibility is meaningful beyond the class of 
/p-spaces, as is shown in a separate section. However, most of the paper uses 
specific /,,-techniques and complete results are obtained only in the context of 
lp-spaces. 

Received October t6, 1986 

137 



138 J. B O U R G A I N  A N D  L. T Z A F R I R I  Isr. J. Math. 

O. Introduction 

The purpose of this paper is to show that, for certain classes of matrices acting 

as bounded linear operators on euclidean spaces or on more general Banach 

spaces, it is possible to find "large" submatrices which are invertible. In the 

present context, invertibility is not considered in an algebraic sense but it rather 

means that the inverse of the submatrix has a norm bounded by a constant 

independent of the dimension of the underlying space. Before elaborating on the 

precise meaning assigned to the expression "large submatrix", we would like to 

present two examples which illustrate well the concepts discussed in the sequel. 

Let {ei}',Lt denote the unit vector basis of the n-dimensional euclidean space I~ 

and define the operator  S, : 12"--> 1~, by setting S,,e~ = e , .~;  I <= i < n,  and S,,e,, = O. 

The operators {So}~ ~ all have norm one, are nilpotent and, clearly, they are not 

invertible even in a purely algebraic sense. However,  by deleting the last row of 

the matrix representing S,, i.e. by restricting S, to the linear span [e~]7%' of the 

first n - 1 unit vectors, we obtain an isometry whose inverse exists and has norm 

equal to one. 

Even more interesting is the example of the operator  T, : l,"---~ l~, defined by 

T, = I + S,. Clearly, II To I1 =< 2 and the spectrum g ( T , )  of T, consists of the point 

h = 1 only. It follows that T , '  exists but, as a simple computation shows, 

HT2'II>=Vn/2, for all n (simply, apply T. to the vector x = E , - , ( -  ly  'ej ~ 13). 

This situation is not satisfactory from an asymptotical point of view since 

II T°'  II--' as n 
Consider now the matrix corresponding to T. and delete the even-indexed 

rows and columns. The remaining matrix is actually the identity restricted to the 

linear span of the odd-indexed unit vectors and thus its inverse has norm equal to 

one. 

The important fact about both these examples is that the well invertible 

submatrix has rank proportional to the original rank, and the proportion remains 

fixed in a manner independent of n. 

It turns out that this statement is true in general. We prove below that there 

exists a constant c = c ( M ) >  0 so that, whenever T: l~--* 17 is a linear operator  

of norm _-< M with IITe, 112 = l,  for all n, then there exists a subset o- of 

{1,2 . . . .  , n} of cardinality ]tr I => c n  for which 

for all {a~}j~,,. In the case when the condition I! Te ,  112 = 1; 1 ~ i ~ n, is replaced by 
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the existence of l 's  on the diagonal of T, one actually obtains a square submatrix 

of rank >_-cn which is well invertible. 

The above result combined with a theorem of Ruzsa [26] yields an application 

to harmonic analysis: it follows that every subset B of the circle T, which has 

positive measure, is a set of isomorphism in L2, for some family {e~"X},~A of 

characters with dens A > 0 in the sense that 

Ilfx  112- -> dtlfll2, 

for some constant d > 0  and every f c L_,(T), whose Fourier transform is 

supported by A. Surprisingly, a similar statement for p > 2 fails to be true. 

Moreover,  the subsets B of T, which have this property for some p > 2, are 

precisely those for which T can be covered, up to a negligible set, by a finite 

number of translates of B. 

Another  application to infinite dimensional Hilbert spaces consists of the 

assertion that every Hilbertian system of normalized vectors in a Hilbert space 

contains a subset of positive upper density which is also Besselian and, therefore, 

equivalent to an orthonormal system. 

Similar invertibility results hold for matrices T acting on/X-spaces, 1 < p =< 

as bounded operators provided they have l 's  on the diagonal. In the case p > 2, 

this condition can be replaced by the requirement that II Ze, lip -- 1, 1 = i = n. For 

1 =< p < 2, the condition ][ Te, -- 1; 1 =< i _-< n, does not even necessarily imply 

that T has rank proportional to n. This part of the paper is probably the most 

difficult. 

The invertibility theorem in the case 1 < p #  2 <oc has some' immediate 

applications to the geometry of Banach spaces. Namely, it yields the solution to 

two problems raised by W. B. Johnson and G. Schechtman in [13]. More 

precisely, it is proved below that any well-complemented n-dimensional sub- 

space of L, (0, 1); 1 < p #  2 whose euclidean distance is maximal (i.e. _-> cn [1~p-I/21, 

for some constant c > 0) contains a well-complemented subspace of dimension k 

proportional to n which is well isomorphic to lkp. Furthermore,  it is also shown 

that any system {fi}7 ~ of functions in Lp (0, 1); 1 < p < % which is well equivalent 

to the unit vector basis of l ; ,  contains in turn a subsystem {f~}i~ with 

proportional to n whose linear span is well complemented in Lp(0, 1). 

In addition to invertibility theorems for " large" submatrices of matrices that 

act as "bounded"  operators on l~, we obtain some unexpected results for 

"unbounded"  operators, too. The extremal case of a linear operator  T: l~"---~ l 2 

with ][ T II --< M, for some M < % and with l 's  on the diagonal, illustrates well this 

case. The columns of the corresponding matrix of such an operator  T are 
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elements of norm =< M in 17. Thus, by applying a well-known combinatorial 

result from [4] or [13], one can find a doubly-stochastic submatrix Sk of S = T - 1 

of size k x k with k ~ n / M  2. In fact, one can even ensure that Sk has norm < 

in both Ii k and l~. This would imply, by an immediate interpolation argument,  

that T~ = I + St is a k x k-submatrix of T whose inverse is of norm <= 2 in every 

/~-space, 1 <_- r =< ~. 

It appears that a somewhat  similar result holds for any "bounded"  linear 

operator  T on l~ ; p > 2, with l ' s  on the diagonal or with II Te, lip = 1, for all i. It is 

proved in the sequel that such an operator  is invertible in the above sense (i.e. 

when it is restricted to a subset of the unit vectors whose cardinality is a fixed 

percentage of n) not only in l; but also in 17; 1 =< r < p, in spite of the fact that it 

need not be well bounded in all these spaces. For 1 < p < 2, exactly the same 

type of result holds whenever T has l 's  on the diagonal and 1 =< r <= 2. 

It is perhaps interesting to point out that the nature of the invertibility is not 

necessarily the same for the whole range 1 -<_ r N 2. For p =< r =< 2, one actually 

obtains a stronger form of invertibility, namely, a square submatrix which is 

invertible. In the range 1 =< r < p, as examples below show, this need not be true. 

The paper  also contains a generalization of the results obtained for matrices 

acting as "bounded"  operators  on /~;-spaces to the case of operators  on spaces 

with an unconditional basis. In this case, however,  we are able to prove only the 

existence of well invertible submatrices of size k x k with k = n ~ ~, for any e > 0 

given in advance. The next section contains some results of a non-operator  

nature. We conclude with some polynomial estimates related to some results 

from [15]. 

The results presented throughout the paper  apply to real as well as to complex 

spaces and in most of the cases there is no difference whatsoever.  The only 

exception occurs in Section 5 which is based on J. Elton [8] and, therefore, is 

valid only for real spaces. However ,  by using A. Pajor [23] instead of [8], one can 

also extend these results to the complex case. 

1. Operators on euclidean spaces 

In the first part of this section, we present a theorem on the invertibility of 

" large"  submatrices of matrices with " large"  rows which act as bounded linear 

operators  on finite dimensional euclidean spaces. 

In the second part, we prove a different version which applies to matrices with 

" large"  diagonal. Actually, this result implies the one for matrices with " large"  

rows and, in some sense, is more satisfactory since it produces an invertiNe 
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submatrix of square type. However, the dependence between the rank of the 

invertible submatrix and that of the original one is best possible in the former 

and much worse in the latter. 

PROPOSITION 1.1. Let T: 1~'--+ l~ be a linear operator such that I] Te, l]2 = 1; 

l <= i <= n. Then 

rank T =  > hill Zll = 

PROOF. Put k = rank T. Then, since the Hilbert-Schmidt norm II TII.s of Z 

can be estimated by II Z l I . s =  < tl ZllVk, we get that 

n = ~ IlZe, ll~=llZlG<=llZll=k, 
i 1 

which completes the proof. [] 

REMARK. The estimate above is sharp. Indeed, if n = k • m, for some integers 

k and m, and T: 17--+ l~' is defined by 

Te~jk = e , ;  l<=i<=k, O<=j<m,  

then, as is readily verified, rank T = k and II Ztl = X/re. i.e. 

rank T = n/t] rlle 

This observation should be compared with the estimate obtained for Io'1 in the 

statement of our next result. 

THEOREM 1.2. There is a constant c > 0  so that, whenever T: 1';--, 1~ is a 

linear operator for which N Te, 112 = 1; 1 <= i <- n, then there exists a subset ~r of 

{1,2 . . . . .  n} of cardinality I cr I >- cn/ll Zlf" so that 

o, e, c r') 

for any choice of scalars {aj},~.~. 

The proof requires some preliminary lemmas. The first consists of an 

inequality of Bernstein (see e.g. [2]) which is quite well known in a more general 

form than it is stated here. 

LEMMA 1.3. F/x 0 <  8 < 1 and an integer n, and let {~:,}~ 1 be a sequence of 

independent random variables of mean 3 over some probability space ([1,1i;,/x) 

which take only the values 0 and 1. Then the deviation 

D~ = {o9 E f~; I ~ ~i (o9 ) -8n ->-7  / 
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satisfies 

In particular. 

/z(D~) =< 2e ~'/~2a,-a~-+-'~m. 

p.(D~./:) _<- 2e ~"'"' 

The next lemma will be proved by a probabilistic selection. 

LEMMA 1.4.  There exists a constant Cl > 0 so that, whenever T: l~--+ 17 is a 

linear operator for which II Te, 112 = 1; 1 <= i <= n, then there exists a subset or, of 

{l,2 . . . . .  n} of cardinality I cr~ I > c~n/tl TII'- such that 

Ilelr,.i,.o, <(Te,)lle< I/X/9-; i E o-,, 

where Ptr~,l,~_~ denotes the orthogonal projection from l~ onto [Tei]j~,. 

PROOF. Take 6 = I/8HTII: and let {~}'~'~, be a sequence of independent 

random variables of mean 6 over a probability space (f l ,~, /z) ,  taking only the 

values 0 and 1. For each to E fl, put 

~r(w) ={l_-<j_<- n; sc,(w)= 1}. 

The variables {sc~}~'_~ will act as selectors and the set or, will be, essentially 

speaking, one of the sets or(w), for a suitable choice of to E 1~. 

Put x, = Te~ ; 1 <= i <= n, and notice that 

In particular. 

n 

I i = l  

£~ T 2 = 8 I1Pl,,,-,x,,7-, I].s d/z 

<_- II rll  f,, e, (to)d, 

= a 2 n l l T I I  . 

l~Daal2 i = l  

which implies that there exists a point too E f~ ~ D~.._ such that 
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and 

Put 

It P,.,L, ....... , , ,<, , (x,) l l ' -<=aenl lwl l  2 
i E o - (~g  

i o'(o*01 = ~ ~, (<.-,<,)->- 8n/2. 
j I 

o', = {i E o'(aJ,,); II i:'~t,,L~ ....... ,,,, (x,)ll-~ < 211TIIW?/ 

and observe that 

41] Tile a I °'(<<',,) ~ '~, I -  -< aen II r i le -<- 211Wll'- a I o'(.',,)1. 

i.e. 

I °', I => an/4. 

In view of the choice of 8 made in the beginning of the proof, we conclude that 

II P~.,,,<.., ,.,(x.)ll_. < i / x /2 .  

for i ~ m, and lm I -  n/3211TII 2. [] 

THEOREM 1.5. There exists a constant c2 > 0 such that. whenever T: l~_---, t~ is 

a linear operator for which II re, 112 = 1; i <-_ i <= n, then there exists a subset (r. of 

{1,2 . . . . .  n} of cardinality ]~rz I ~ c.,n/IITIF so that 

I ~, asTe, II >=c2 ~, l a, l / ' , / Io : l ,  
j E 0"2 112 j E 0"2 

for all {ai},~<~. 

PROOF. Let c~ and o'~ be given by Lemma 1.4, and put 

u', = x,  - Pl.<,l,~-, . ~ ( x , ) ;  i ~ o',. 

Then (xi, u ' ) =  0, for i,j E ~r, and i • j ,  and also (by the choice of m) 

<x,, u',;> = 1 - I I  Pt,<Jl,~:,-,,,( x,)112 > 1/2; i ~ o-,. 

It follows t h a t  1 =  > II u',ll2---el; i ~  m, and thus the vectors 

", = ":Ill ";ll2 

satisfy (x,, u,) = 0, for i, j ~ (r~ and i / j, and (x,, ui ) > ~, i E m .  
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Consider now the sets of tuples of signs 

~-= {(si)i ~,,iE { -  1, + 1}i'"[; Z SiUi <--2',/1,,,I}. 
i @+tl 2 

Since 

it follows that 

~ 

i L 2 i ~ <rt 

I g'[ ->- 3- 2!"r/4. 

By a well-known result of Sauer [27] and S. Shelah [29] (see also [31]), if k 

satisfies 

I~l> Y. ' 
i =:() 

then there exists a subset crz of o-, of cardinality k such that, for each tuple 

(e.~),~,~, there is an extension (e~),~,, which belongs to 7;. In our case, we can 

ensure that k =>_ [cr~ ]/2 and thus 

I<~1 ~ c,~/211TII -~. 

In order to complete the proof, for any choice of {a,},e,,: write ai = bj + ic, 
with bj and c~ real numbers, for all j E or:. and select signs (0')jE~:and (O';)je,,, 
such that b~O'j=lbi[ and clO';=[gl;  jCo-2.  Then let (e'j), .... and (e ' ; ) ic , ,be 

extensions of (O'~)ic~ :, respectively (O';)ic<!. which belong to ~. It follows that 

4 V" ,r, ' " I e~,~, _- aix, []>](~.aixi.2 = < 2(ej: ' - ie';)u,) 
IC  / C r r l  

= 1 i - 

E (IbjF+ rg I)(x. u,) 
j C ~rz 

which completes the proof. 

> 2 la, I/2, 
j C ~r2 

[] 

We shall present now two versions for the completion of the proof of Theorem 

1.2. After the first draft of the paper was written up, N. J. Kalton suggested to 
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replace the exhaus t ion  a rgument ,  appea r ing  below as the first version,  by a 

Maurey -Nik i sh in  factor izat ion type of a rgument .  This is indeed possible and 

would shor ten  the proof .  Howeve r ,  the proof  of the factor izat ion t h e o r e m  given 

in [22] is quite compl ica ted  and in o rder  to keep  the pape r  as se l f -contained as 

possible,  we prefer  to give here  a direct factor izat ion a rgumen t  which is adap ted  

to the r equ i r emen t  of this p roof  and is very e lementa ry .  

PROOF OF THEOREM 1.2 (first vers ion - -  an exhaust ion  argument) .  Le t  

T:  17----~ 17 be a l inear ope ra to r  for which xl = Te~, 1 <= i <= n, have  all norms  

equal  to one.  Let  x2 and ~r2 be given by L e m m a  1.5. The  p roof  of 1.2 will be  

comple t ed  once we establish the existence of a subset  cr of ¢2 of cardinali ty 

[ cr I ->- [ (r21/2 such that  

1/2 / a, ,lk>_c2 (Z /4, 
for any choice of {aj}j .... 

Suppose  that  this assert ion is false. Put  ~-~ = or2 and construct  a vector  

y, = Ej~,, b,.jxj such that  II Y, ]]2 < c2/4 but Ej~,, ]b u 12 = 1. 

Assume  now that  we have  a l ready cons t ruc ted  subsets  ~'~ D ~'2 D • • • D ~'~ with 

I~-,l=>[~rzl/2 and vectors  {y~}t_, such that  y ,=X~, ,buxj ,  [1y, 112<c2/4 and 

Ej~,,I b~.j [ 2 = 1, for 1 =< i =< l. Cons ider  then the set 

7'+' = { ]  ~ ~" ; ~ lb',j l 2 <1 

and if I ~-,+, l<  [¢21/2 s top the procedure .  On the o the r  hand,  if I t  t+l I -> I ~2[/2 then 

there  exists a vec tor  

yt+i = E bl+l,iXi 
jE'rt+~ 

such that  II Y,+t 112 < cd4 but  "2 i e ,,+,l b,+,., [2 = 1. 

Suppose  that  this const ruct ion s tops af ter  rn steps. Then  

I'r,,,+, I < I o-21/2 

and,  thus, for  j E (r2 - rm+,, we have  

~ Ib,,,l=->_ 1 
i= l  

with the convent ion  that  b~.i = 0 for  those i and j for which it is not defined 

(notice that  if j E ~ ' t -  ~'~+,, for  some  1 < l < m, then b u is def ined only for  
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1 ~ i <_- l). Hence ,  

i.e. 

m = 2  X i<i:= :i; gtb,,,I ~ 
i=1 ] E l i  I E o'2 i =1 

j~aa-r~+~ i=l 

m>lo-~ll2. 

On the o ther  hand, by L e m m a  1.5, we have 

),2 

- > V 2 1 o - ~ l j  ~ .= 

However ,  the inductive construct ion descr ibed above  yields that  

~: Ib~j 12---2, 
i=l  

for  all j ~ or2. Indeed,  this is comple te ly  clear  if j E z,,+l while, for  ] E rl - ,~+~; 

1 =< l <= m, we have 

It follows that  

Ib,.,l= = ~ Ib,., I~+ I bt.j 12< 2. 
i=1 i=1 

i.e. 

( i = ~  1 \ 1/2 m X/mlo'~l/2> E V2. Ib,.,I =) >_- • ~lb,.,l~=m, 
jEo '2  i=1 i c az 

I~r21>4m. 

This est imate contradicts,  however ,  the fact that  m _-> I (r21/2. [] 
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PROOF OF THEOREM 1.2 (second version - -  a factorization argument). Let again 

T be a linear operator as above and x~ = Te~ ; 1 <= i <-_ n. By Lemma 1.5, the 

operator S: X = [ x , ] , ~ - - >  IT, defined by 

Sx, = e, IX~ 1 o',. [; i ~ or,, 

satisfies II s II =< 1/c=. The dual S* of S maps l~ into the Hilbert space X and, thus, 

its 2-summing norm satisfies 

7r_,(S*) _<- Ko II s*ll <= Kc,/c2,  

where K~ denotes, as usual, the constant of Grothendieck (see e.g. [20] 2.b.7). 

By Pietsch's factorization theorem [24], there is an operator U: l','--->X with 

II ull  =< ~_,(s*) and a diagonal operator D: l"~---~ l~, defined by De, = Le, ; 1 =< i =< 

n, with EL~ [A, [-~ =< 1 so that S* = U ( D ) .  Dualizing this factorization diagram, we 

conclude that S = D*(U*), where D *  e~ = Le~ ; 1 <= i <= n. It follows immediately 

that 

U'x, =e,/,~,Vlo_,l; j~_~. 

The operator U* will be a "good" isomorphism on that portion of ~r, where hj's 

are not too large. To this end, put 

o- = { j  E ,~2;I ~, I ~ V2/I o-z I} 

and notice that, for any choice of {aj}j~,,, we have 

K°ll, a,x, 
\ 1/2 1/2 ] 

: ( ,~  la,/A,X/Io'2fl 2) >=(,~ Ia, I 2) /'k/2. 
This completes the proof since 

i .e .  

1 ~  Z IA, r~21o- . ,~o- I / Io -~ l ,  
j E o ' 2  ~ o" 

Io-I> Io-~1/2. [] 

We pass now to the study of matrices acting on finite dimensional euclidean 

spaces which have l 's  on the diagonal. 
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THEOREM 1.6. For every M < ~  and e > 0 ,  there exists a constant c = 

c (M, e) > 0 such that, whenever n >-_ 1/c and S: l~--~ l~ is a linear operator of norm 

If S tl <= M whose matrix relative to the unit vector basis has O's on the diagonal, then 

there exists a subset ty of {1,2 . . . .  , n} of cardinality It~ f ~ cn such that 

[I R~SR~ I[ < e, 

where R~ denotes the orthogonal projection from 12 onto the linear span of the unit 

vectors {e,},~. 

Theorem 1.6 has the following immediate consequence. 

COROLLARY 1.7. For every M < co and e > O, there exists a constant d = 

d(M, e ) > 0  such that, whenever n >-1/d and T: l~---~ l~ is a linear operator of 

norm II TI[ < M for which the matrix relative to the unit vector basis has l 's  on the 

diagonal, then there exists a subset or of {1,2 . . . . .  n} of cardinality dn such 

that R~TR~ restricted to R~l~ is invertible and its inverse satisfies 

II(R~TRo)-'II< 1 + e. 

The proof of Theorem 1.6 requires some preliminary results which in view of 

further use in the sequel, are presented in a form more general than actually 

needed in this section. 

PROPOSITION 1.8. There exists a constant A < ~ with the property that, for any 

1 < r <= 2, 0 < ¢5 < 1 and ~"e 2 <= 3, <= & where r' = r/(r - 1), one can find an integer 

no such that, whenever n >= no and {~:~}~'=~ is a sequence of independent random 

variables of mean ~ over some probability space (11, "Z, I~ ) taking only the values 0 

and 1, then, with m = [~/n], we have 

-_< A -  log(-//8" "I[ c II,, 

for any choice of c = EL,  c,e, ~ 17 with c~ >= 0; 1 <= i =< n. 

PROOF. Fix r, ~ and ~ as above, and take n large enough so that n ' /"  < 2. 

Then, for any c =ET-t c,e, E 17 with Ilcll  = 1, we have 

I I~  c'~'[I,. = ( , . , , . , ~ . . c , , c , . . . c , .  ~, ,,,(w),,~(co)-.. ,,~(oJ)dlx(oJ))':" 

. . . ~ I / m  

E CilCi2°°'Cim~h(IpI2"'"'lm)) ' 
I<il,i2,...,im~n 
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where h(i~,i2 . . . . .  ira) denotes the number of distinct integers in the tuple 

(il, i2 . . . . .  i,, ). By using H61der's inequality in an obvious way, we conclude that 

where {~}7=1 is a sequence of independent random variables of mean &' taking 

only the values 0 and 1. 

Since, for each 1 ~ k =< n, we have 

} (;) 
it follows, by using Stirling's formula, that 

-<_ n '/m • max k • (en6"/k) T M  
I~k<=n 

=< 2m sup h(e6"/hT) ~. 

However ,- the supremum on the right-hand side is attained for ,~ = h,, which 

satisfies 

1 2 < < 
Iog(r/~r.) = x,, log('v/6") " 

Hence, one can find a numerical constant 1 <-A < ~ such that 

] l ~ , l [  ___A( m )) 
i=1 log(T/8 ~' ' 

which, of course, completes the proof. []  

The proof of Theorem 1.6 requires the use of a variant of the so-called 

decoupling principle. 

This principle can be found in literature, mostly for symmetric matrices. For 

sake of completeness, we give here a proof of the version needed below. 

PROPOSITION 1.9 (a decoupling principle). Let (fL E, IX) be a probability space 

and (fl',~,', tz ') an independent copy of (~,E, /x) .  Fix 0 < 6 < 1 and let {~}L, be 
a sequence of independent bounded random variables of mean 8 over (fL~,, tz). 

Then, for any double sequence of vectors {x~.j}~.i=~ in an arbitrary Banach space X 
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such that x,.~ = 0; 1 <= i <= n. we have 

~ ~[~_,~(to)~ (to)xol ] dpt (to)<--_ 20 ~ ~r [I,~ ~, (~o)~ (to')x~.i I dp.'(to')dp.(to). 

PROOf. We shall prove first the statement under the assumption that {~}~'_~ 
are all of mean 0. 

Let {'O,}L~ be a sequence of independent random variables of mean ½ over a 
probability space (U, 0-//, u) taking only the values 0 and 1. Then, for each 
1 -<_ i ~ j  ~< n, we have 

Hence, 

f~, r/,(u)(1 - rlj(u))du(u)=]. 

= 4 f n  ][~.2j [ f .  rl~(u)(1-*b(u))du(u)] ~(to)~(to)x~.Jlldtx(to) 

For each u E U, put 

and note that 

tr(u) = {1 ~ i =~ n; n,(u) = 1} 

ic~r(u) j~c~(u) 

However, for each fixed u ~ U, {~:~}~.)are independent from {~i}i~(.). Hence, 

I<-4fu f, In, tl,~,),~,,,'~'(~)~(c°')x"'lldl~'(~')dlz(~°)du(u) 
which implies the existence of a Uo ~ U so that, with the notation tT(Uo) -- m we 
get 

1~4f,, ~,, II ~,~,~ ~, (o))~ (co')x,.i]l d/z'(~o')d/z (~o). 

On the other hand, since {~,}L~ are assumed to be of mean O, by taking the 
expectation with respect to the subfield generated by {~(~o)},~ in ~ and 
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{~/(o)')}i~. in E', we obtain that 

l 1' i , j =  1 

We pass now to the general case where {~:~}~'-ol are assumed to be of mean 
8 > 0. Then 

I<= ~ qt,.,¢, (e'¢w)- 8)(e'¢w)- 8)x"'[I s f, ~,(to)x,,,[[ dtx(to) 

By introducing inside the expression []E~.,=. ~,(to)~(to')x,.,[] the expectation 
with respect to p, or with respect to /z' or with respect to both /z and /2,', we 
check easily that J exceeds each of the last three terms in the right-hand side of 
the above inequality. Hence, in view of the result proved for random variables of 
mean O, we get that 

I <=4 ~, ~, 11,4~, (~ ' (w) -  8)(~J(w')-  6)x'41 dl.t'(to')dtz(to)+ aJ 

-<7J +46 fn Ili.i~--, '`(¢0 )x"/ll d/x (o/)+46 fn' Ili.j~--1 '` (¢°"x"ill d/'t'(°)')+ 482 li,.;~-; x"'[I 

10./. [] 

The main and the most difficult part of the argument needed to prove 
Theorem 1.6 is given in the next proposition, where we show how to select a 
submatrix R~SR,, of S, of size proportional to that of S, so that R,,SR~ would 
have small norm when it maps I~ into I~'. Again, the result is presented in a more 
general form than needed. 

PROPOSITION 1.10. There is a constant D < ~ with the property that, for any 
0 < 8 < 1, one canfind an integer n(8) so that, whenever 1 <= p <= 2, n >= n(8) and 
S is a linear operator on l", whose matrix (a~.,)~,j=l relative to the unit vector basis of 
l~ has O's on the diagonal, then there exists a subset r of {1,2, . . . ,  n} of cardinality 
It[ = m =[6n]  for which 

for any x @ 1~. 

PROOF. Fix 

}] R,SR,x ]], <= D ]] S }] ] • ]] x lip, 

l < p = < 2 ,  0 < 8 < 1  and let S and (a,,i)7,i=~ be so that Se~ = 
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ET=t a,.ie~ ; 1 < i <-_ n. Let {~:,}"_~ be a sequence of independent random variables of 

mean 8 over some probability space (ll, £ , /x)  which take only the values 0 and 1, 

and let (f l ' ,£ ' , /z ' )  be an independent copy of ([1,~,/~). 
For a linear operator W on R", we shall put 

lit w III = sup{m "~1I Wxll,; x e I;:. Ilxll. <= l}. 

where again p ' =  p/ (p-  1). Note that, for any such W, 

III w III --< 2a '"tl wl l ,  

where II wll denotes the norm of W as an operator from l~; into itself. 
Since a,.~ = 0; 1 _<- i -<_ n, we can use the decoupling principle Proposition 1.9 

and get that 

I=~1 ]l]i.~'~i(to)el(to)oi,iei@e*ll]dla'(to) 

<=20£r ~1 II1,<~-,,~ J;i(to')ai'iei@e' ] d/x(to)d/'t'(to',' 

where, for each to E fl, 

r(to) = {1 ~ i  ~ n ; ~:, (to) = 1}. 

By Lemma 1.3, the subset 

f i =  {to ~ n ; I r ( t o ) l  _->2an} 

of [1 has measure _-< 2e ~,/,,,. Thus 

£ II 2~i(to')¢,e,@e, I d (to,d '(to',+4Oa""llSlle 
l f t  l' i G r ( ~ }  j = l  

_-<40 sup I(r)+4(18 "°llSlle ~'"", 
"rC{I.2. . ,n} 

:rl=m 

where 

l ( r )  = £1 II~j~J(w)a~,e~@e,[lldlx(to)" 

I Fix now a subset "r of {1,2 . . . . .  n} of cardinality Irl = m, take e.g. e =2 and 

choose an e-net ~ ( r )  in the unit ball of Rd,", so that 

] ~ ( r ) ]  =< (2/e)"' = 4". 
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Since any vector x in the closed unit ball of R,l"p can be expressed as a 
combination x =E~=~Ajxj with xj in ,~(~') and Ai=>0, for all j, such that 

E~=, Aj = 2, it follows that 

I(~-)_-<2m '~P'f max 12]~a,.jb~] ~i(w); x = ~ b~e~E ~(~-)} d/x(to) 
/ = 1  " : i ~ T  

< 2 m  '/P'~, ( ~ ' ~ { [ ~ [ ~ a , . , b ,  ~i(w)[";x=~b,e,E.~('r,})''dlx(w, 

N 2 m  "~'{..~(~-,,'" .max{  ,=~t,~a,.,b,t~l,'x=~b,e, Eff(~-,] 

,~ , , ,  ~ ".max {11 ~ c4 ' ~ -- S c,e,~,;., c,,.., } 
j = l  m / = 1  

Thus, by using Proposition 1.8 with y = 6 and r = p, we get that 

( ~) '"  I(~-) _-< O,,ll S I1 log , 

for a suitable constant Do, independent of p and n. Hence 

( ') '~' lie """) I<=40D.IJS[I • l og~  +403 '/ellS 

from which we derive that there exists a point ~o,, in the set 

D={oJ  C O ;  m =< 2 ¢~(w)<=36n/2} 
i = 1  

such that 

1 i ( ~) '"  Z a,.,e,@e, ~41D,,llSll log , 
~,j E r ( ~ , o )  

provided n is large enough relative to 6 as to ensure that 

Since m <_- I r(w,,)t _-< 3t3n/2 we complete the proof by taking as r any subset of 

~-(oJ(,) which has cardinality m. [] 

We are now prepared to return to Theorem 1.6. 

PROOF OF THEOREM 1.6. As in the case of Theorem 1.2, there are two ways to 

complete the proof: by an exhaustion argument or by a factorization method. 
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We shall present here only the second alternative. The proof is very similar to 

that of the factorization argument used to complete the proof of Theorem 1.2. 

The starting point is Proposition 1.10 which asserts the existence of a constant 

D so that, for any 0 <  6 < I, there is a subset r of {1,2 . . . . .  n}, n >_- n(3),  with 

]~'1 = m = [Sn] for which W = R,SR, ,  considered as an operator  from l',' into 17, 

has norm <= D IIS II(m/iog(ltS))  '12. Since W* maps l"~ into l~ it follows, by using 

Grothendieck's  inequality and Pietsch's factorization theorem, that there exist 

an operator U: l~---~lL with IIU[I<=I, and a diagonal operator  V: 17-*l",_, 

defined by Ve~ = Le~ ; 1 <= i <= n, with 

Ix, I-~ =< (KoD IIS II) -'- mllog(ll<3) 
i = l  

so that W* = U(V) .  By dualizing this factorization diagram, we conclude that 

W = V*(U*) ,  where V*e~ = A~e~; 1 -<_ i _<- n. Set 

tr = (1 ~ i ~ n;I  A, I ~ 2 K c D  II s IIIX/iog(ll~)) 

and note that 

l~l  _>- n ( 1 -  8/4). 

Furthermore,  for any x C l~, we have 

II R,,SR<,x 112 = II R,,WR.x I1-~ = II R,.V* U*R,.x 112 

=< (mLx I A, 1)' II u*  R,,x t1= =< 2 K~D II s I1 II x 11_4Vlog(l/~), 

i.e. 

II R:SRo II ~ 2 K o O  11 s I l lX/iog(l/8).  

Therefore,  if e > 0 is given and 8 is taken small enough as to ensure that 

2KGD [I S II/Vlog(l/~) < ~, 

then, indeed, II R.SR,, IL < e. []  

REMARKS. (1) S. Szarek kindly brought to our attention that B. S. Kashin 

proved in [151 results of a somewhat similar nature to Theorem 1.6. B. S. Kashin 

shows in this paper that, whenever S is a norm one operator  from l~ into IT, then 

one can select a subset tr of {1,2 . . . . .  m} of cardinality I c r l = n  such that 
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II R~S ]l ~< B(log(m/n)) -w', for a suitable B < ~. This result is, of course, interest- 

ing when m is much larger than n. Kashin's theorem does not seem to imply 

Theorem 1.6 directly. However, one can deduce it from his theorem provided it 

is used in conjunction with the decoupling principle and other arguments given 

in Proposition 1.10. In Section 8, we shall present some improvements of 

Kashin's results. 

(2) K. Ball and the second-named author obtained previously (unpublished) 

some weaker version of Corollary 1.7 (e.g. with I~l _-> dn 2/3, for some d > 0). 

(3) Theorem 1.6 implies Theorem 1.2 since I] Tei ][2 = 1, for all 1 =< i =< n, yields 

that the matrix corresponding to the operator T*T has l 's  on the diagonal. 

However, the dependence between the cardinality of o" and the norm of T that 

we obtain in Theorem 1.6 is of the form I~r I => dne-ll-rl~, for a suitable d > 0. This, 

of course, is much worse than the estimate given by Theorem 1.2. 

2. Applications to harmonic analysis and Hilbertian systems 

The natural extension of the notion of "cardinality proportional to n"  to an 

infinite setting is that of positive density or upper density. Recall that, for a set A 

of integers, the upper density densA and the lower density densA of A are 

defined as lira . . . .  respectively lim_m ... . .  of the sequence 

I A n / a , 2  . . . . .  n i t .  n : 1 , 2 ,  
n 

If dens A = dens A then their common value dens A is called the asymptotic 

density or simply the density of A. 

The first part of this section is devoted to the study of some questions 

concerning the characters on the circle. The notation related to this notion will 

be the standard one. Throughout this section, the circle is denoted by T while v 

stands for the normalized measure on T. For 1 <= p =< ~ and A a subset of the 

integers, we shall denote the closed linear span of the characters {ei"~'},~A in 

Lp(T, v) by L~(T, ,,). 

We start with a result which asserts that, for any subset B of the circle T with 

u(B) > 0, there exists a subset A of the integers of positive density such that 

LA(T, v) contains no function vanishing a.e. on t3. This result solves a question 

raised by W. Schachermayer. 

Quite surprisingly, the situation differs completely for p > 2. This follows from 

a characterization of those subsets B of the circle which have the above property 

in L, (T, ~); p > 2. 
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The last part of this section contains an extension of the theorem in L2(T, u) to 

the more general case of Hilbertian systems. 

In order to simplify the statements of some of the results presented in the 

sequel, we introduce the following definition. 

DEFINITION 2.1. A subset B of T is called a set of isomorphism in L , ;  

1 _<-p < ~, for some family of characters of positive density if there exist a 

constant d > 0 and a subset A of the integers with dens A > 0 such that 

II f ' x .  lip >= d . Ilfll,,, 
whenever f E L~(T, v). 

THEOREM 2.2. Every subset B of the circle T of positive measure is a set of 

isomorphism in L2, for some family of characters of positive density. More 
precisely, there exists a constant c > 0 so that, for any B C T, one can .find a subset 

A of the integers with dens A => cu(B), for which 

)lftl  >= I I f x ,  112 --> c. v , , W ) .  It f 11- , 

whenever f ~ L2(T, ,) .  

PROOF. Suppose that u(B) > 0; otherwise, Theorem 2.2 lacks content. Let T 

be the operator acting on L2(T, u) which is defined by 

T(f)=f.x~/~/v(B); f E L 2 ( T , v ) ,  

and note that II T]I = 1/k/u(B).  
By Theorem 1.2, there exists a c > 0 such that, for each n, there is a subset or, 

of {1,2 . . . . .  n} of cardinality 

_-> T i,. , 2> Icr, I cn/]l lie I,-o11 = c n e ( B )  

for which 

Hx~f][2 >~ c k/u(B)llfll2 , 

whenever the Fourier transform of f is supported by or,. 

Consider now the family 2( of all finite subsets cr of the integers for which 

IIx~flt2 ~ c Vv(B)IIflI2, 

whenever the Fourier transform of f is supported by ~. The family 9~ is 
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homogeneous in the sense of [26] Definition 3.1, i.e., for every cr ~ Y(, all the 

subsets and translations of o- belong to Y(. For each n, put 

d, (Y()= max{ I o" N{1,2 . . . . .  n}l/n; or E Y(} 

and note that 

d ( Y )  = lim d. (YC) 

exists since {d, (;~)}~=~ is a non-increasing sequence. Since clearly ~r,, E Y(, for all 

n, we easily conclude that 

d ( ~ ) >  cv(B).  

Now, by I. Z. Ruzsa [26] Theorem 4, there exists a set A of integers whose 

finite subsets all belong to ~ and 

densA = d(Y(). 

This, of course, completes the proof in view of the definition of 9t. [] 

REMARK. The use of Ruzsa's result to pass from the finite setting to a density 

statement was pointed out by Y. Peres. Our original proof yielded only upper 

density. 

As we have mentioned above, Theorem 2.2 fails for p >2 .  This is an 

immediate consequence of the following result. 

THEOREM 2.3. Let p > 2. A subset B of T is a set of isomorphism in L,, for 

some family of characters of positive density, if and only if T is the union of.finitely 

many translates of B, up to a set of measure zero. 

The proof of Theorem 2.3 requires two preliminary lemmas. 

LEMMA 2.4. There exists a constant C < o, such that, whenever t ~ T, e > O, F 

is a subset of integers for which I 1 - e '"' I < e if n E F and f E L~(T, u); 1 =< p < ~, 

then 

II f - f, lt. <= llflt,,. 
where ~, (x)  = f ( x  + t) denotes the translate of f by r 

PROOF. Recall the classical fact that 1 - e j~ is a function of spectral synthesis, 

i.e. it can be approximated in the space A(T)  of the absolutely convergent 

Fourier series by functions which vanish in a neighborhood of x = 0. More 
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precisely,  there  exists a constant  C < ~ so that,  for  every e > O, one  can find a 

funct ion F, E A (T) for which 

(i) F~ (x)  = O, wheneve r  x E T satisfies I 1 - e ~x I < e, 

and 

(ii) I [1-e  '~ - F.(X)IIAcT,< C~. 
A simple proof  of this assert ion,  originally due to N. Wiener ,  can be found,  e.g., 

in [161 . 

The  above  proper t ies  of F, imply that  if we put  

+ ~  

1 - e ' X - F , ( x )  = ~, " aje , 

then 

and,  fu r the rmore ,  that  

[¢I<CE, 

+ ~  

1 - e'X = ~, aje ~J~, 

wheneve r  1 1 -  e 'x 1< e. 

Fix now t E T  and e > 0 ,  and let F be  a subset  of the integers  for  which 

[1 - e~"' [ < e ; n E F. Then ,  for every  f E Lr (T ,  v), we have  

I[£ - f ,  llp : ]1 S'..~,. f (n  ) ( 1 -  e'"')e'"X l[p 

: l l  ~_~ a,~,f(n)e'"'x÷"'l,p 
j n ~ l "  

=< ~ [a, lllf,,llP 

< ccllfi[l~. [] 

LEMMA 2.5. Fix 7 > 0 and a positive integer r, and let B be a subset of the 
circle T such that 

v ( B + & )  < 1 ,  
= 
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for any choice of {&};,=~ in T. Then there is an integer I with the property that, for 
every sequence {tk};,_~ of points in T, one can .find a dyadic interval J so that 

v ( J )=2- '  and v ( ( J + t k ) f q B ) < 3 " . 2  ', 

for all 1 -<_. k <- r. Furthermore, the assertion remains valid if I is replaced by any 
other integer larger than it. 

PROOF. We need first some additional notation: for any vector 

;=( t~ , t ,  . . . . .  t,) 

in T' and any dyadic subinterval I of T, we put 

( q~,('f)=v I fq U ( B - t k  v(I). 
k = l  

It follows from the Lebesgue density theorem that, for any [ E T', one can find a 

dyadic interval I(7) so that 

q~.7~(t-) < 3'. 

Moreover, since T' is compact and, for each I as above, ¢i is clearly a 

continuous function, one can choose finitely many dyadic intervals {I, }~=~ so that 

min ~,. (7) < 3', 
l ~ h ~ H  

for all t E T ' .  Suppose that P ( / h ) = 2  -I(h), for some positive integer l(h); 
1 =<h =</4, and let l be any integer larger than maxt~,~ . l (h) .  Each of the 

intervals I, can be split into a union, 

z,, = U I,,.,, 
iEAh 

of mutually disjoint dyadic intervals {I,.~},Ea, of length 2 -t and 

Hence 

~,~Ct)-- ~ (vCl~,,)Iv(l,))~o,,.,(f); lET'. 
i E ~ h  

3' > rain ~ j ( t ' ) ~  rain max 2'v((J + t~)n B), 
[./[=2 I ! J l = 2  t I . ~h~ r  

which clearly completes the proof. [] 
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PROOF OF THEOREM 2.3. Suppose first that B is a subset of the circle for which 

there exist points {&}~'=~ on T such that 

v U (B+tk =1.  

Then, for any function f E Lp (T, u), we have 

tlfll. =< ~ IIf,.. x. II. --- m-I l fx .  II. + ~ I I f -  f,,ll.- 
k=l k - I  

Let C be the constant given by Lemma 2.4, take e = 1/2Cm and put 

A(e)={nEZ;  max 

In view of Lemma 2.4, whenever f E L~")(T, u), then 

Ilfll. --< m I I f x .  II. + Cm~ Ill II., 
i .e. 

1I fx,~ lip -> ltf 11,, t2m, 

part will be completed provided we show that 

consider the group homomorphism ~b: Z--~ T", 

z = U  r/, 
j~A 

where 

Fi={nEZ;(nt,,n& . . . . .  nt,,,) E Gj}; j E A .  

However, as is easily verified, for each j E A, the set F s is a j-translate of A(e), 

i.e. Z is a finite union of translates of A(e). This implies that dens A ( e ) >  0, thus 

completing the proof of the "if" part. 

and the proof of the "if" 

d e n s A ( e ) > 0 .  To this end, 

defined by 

41(n)=(e'",e ~"~ . . . . .  ei"'~); n E Z .  

The fact that A(s) is of positive density is a consequence of the compactness of 

T" which implies that the range of @ can be covered by open sets of the form 

Gi={.,~:(x,,x2 . . . .  , x , . )E T" ", ,--k ~.~max [e"'~-e'~l<e } ", j E A ,  

with A being a finite set of integers. This yields that 
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In order  to p rove  the coverse ,  we assume now that  B C T, A C Z and c > 0 are 

so that  

(i) dens  A > c, 

and 

(ii) [IfxB lip => c Ilfllp, f ~ L~(T, v), 
and,  moreove r ,  that  

~' U (B+tk < 1 ,  
k = l  

for any choice of {tk}~'=~ in T;  m = 1,2 . . . . .  

T a k e  r = (c2/2~3) p/~p 2~, r = [29/r31 + 1 and 3' = c2p/r" 2~3, and let I be  an integer  

satisfying the assert ion of E e m m a  2.5, for the above  values of r and T, and so that  

the set 

A , , = { n C A ; I n t < = 2  '} 

has cardinali ty I A,,] > c • 2( 

Consider  now the funct ion 

F ( x ) =  ~ ' ° "  e , x E T ,  
n EAIb 

and choose  a maximal  system {tk}7=. of 2 -t ' - s epa ra ted  points  in T such that  

]F(tk)l>=r.2'; l<-k<=m. 

For  each 1 =< k <_- m, put 

Wk ={x @X; I x - t k  ] <  r'2  ,-s}, 

and note  that,  wheneve r  x @ Wk, we have  

[ F(x) [  _>-] F ( t ~ ) ] -  ] F ( t ~ ) -  F (x) l  

Hence  

>-r.2'- Z le'"'k-e'"~I 
n ~ A o  

=> r "  2' - I A,,12'r. 2 -' -s 

> r "2 ~-~. 

2,+2 IA,,I=L ]F(x)12dv>=mr3.2, 7, 
k = l  
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from which it follows that 

m ~2~.  r -3<  r. 

This means that, by Lemma 2.5, there exists a point t ~ T such that 

v((I  + t + tk)N B ) <  y .  2 <, 

for all 1 <_- k -<_ m, where I denotes the interval [ - 2  -~ ~,2 ~ ']. Put 

m 

V = T -  I,.J ( I + t + t k )  
k = l  

and note that the translate F` of F satisfies 

<= fv  [F`(x)t"dv + mllF`ll~" Y" 2-'" 

However,  whenever x ~ V, then x -  t is 2 -~ 1-separated from all the points 

{tk}r=,. Hence, by the maximality of this system, I F(x  - t)} < r"  2 ~, i.e. IF, (x)[ < 
r .  2 t. It follows that 

IIF` x .  I1~< ( .  2')" 2 f,. i F, (x )12 d,, + m IA,,I%" 2-1 

<_ .r.-2. 2,,p-Z, IA~,l + m lA,,l,y 2 , 

<__ (r p 2 + m y ) .  2"" 1>~,. 

A o 
which, by (ii) and the fact that F ~ Lp (T. v) C LpA(T. v). yields that 

c HFII, --<][F, "XBH, ~-~( 'rl-2/p + (ry)l/P)" 2t/"'+2, 

where p' = p/(p  - 1). 

On the other hand, if J denotes, e.g., the interval [ - 2  -t-"', 2 ' ,o] then, by 

H61der's inequality, we get that 

c2-1°<2-'-1°[Ao1< ]I ' F(x)dvI<=IIFII..IJI""'<IIFII.-2 ".'. 

By combining these inequalities, we obtain 

c 2 < 2'2(r '-2'. + (ry)l'"). 

which, in view of the fact that r ~-2/" = c'-" 2 -13, implies that 
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c'-" 2 -'~ < (r " "y)~/~. 

This contradicts the choice of % thus proving the converse. [] 

COROLLARY 2.6. I f  B C T is a set of isomorphisms in Lp ; p > 2, for some 

family of characters of positive density, then its closure B has non-empty interior. 

COROLLARY 2.7. There exists a subset of the circle with positive measure 

which, for each p > 2, is a set of isomorphism for no family of characters of positive 

density. 

We return now to the study of systems of vectors in Hilbert space and present 

a generalization of Theorem 2.2. First, we point out another way of expressing 

the fact that the operator T, defined in the proof of Theorem 2.2, is bounded. 

Namely, it can be asserted that the vectors q t  (x) = x~e~"X ; n E Z, satisfy the 

estimatd 

for any choice of {a,},*~_~. This leads naturally to the notion of Hilbertian 

systems. 

DEFINITION 2.8. A normalized system of vectors {x.}~=~ in a Banach space X 

is called Hilbertian provided there exists a constant M < ~ such that 

for any choice of {a~}~=l. If the reverse inequality holds, i.e. if 

\ 1/2 II 

again, for every choice of {a.}~=,, then we say that {x.}~=, is a Besselian system. 

It turns out that Theorem 2.2 can be extended to any Hilbertian system in an 

arbitrary Hilbert space. However, instead of positive density we can prove the 

corresponding statement only with positive upper density. 

THEOREM 2.9. There is a constant d > 0 such that, for every Hitbertian system 

{x~}~=~ in a Hilbert space X with constant M, for some M < ~, there exists a set A 

of integers with dens A => d / M  2 so that {X,},~A is also Besselian with constant d- ' .  

In particular, {X.},~A is Md-~-equivalent to an orthonormal system. 
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PROOf. For simplicity, we shall suppose that the underlying space X is 12. Let 

{e.}'~=~ denote the unit vectors in 12 and let R ,  and R'. be the orthogonal 

projections from 12 onto [e,]7=~, respectively [e,]7=.+~. 

The hypothesis that {x,}~=~ is a Hilbertian system with constant M < a¢ can be 

translated into the fact that the linear operator  T on 12, defined by T e ,  = x , ,  for 

all n, has norm --<- M. 

Let c > 0 be the constant given by Theorem 1.2 and let {~',}~=, be a sequence 

of positive reals such that 

"r = r < c / 2 M .  

We shall now construct two increasing sequences of integers {q,}7=t and {r,}~_~ in 

the following way. Put q~ = 1 and choose r~ so that 

I] R',.,~t,,,,+, II < 'q/2. 

Note that 

since, otherwise, one could construct a sequence {rl,.}7.=, of mutually disjoint 

subsets of the integers and a sequence of vectors of the form u,. = Zj~. .  c,xj so 

that II um I1= = I but II n,,(um)ll= = ~, for some a > 0 and all m. Since w-lim,._~ u,. = 

0 we can assume, by passing to a subsequence if necessary, that {u,.}7.=~ is an 

orthonormal system. This would imply that we have 

k 

= Y. IIR,,(um)ll  lln,,ll ,s  ,1, 
rn=l 

for all k ; and, hence, contradiction. It follows that we can find a q2 > q~ so that 

] In. ,  ~.~ [ ]< .2 /2 .  
I[xjb-q2+t 

Then we choose an r2 > r~ so that 

R" 
Pl~,ilJ -q2+ 

Continuing so, we construct, by induction, two increasing sequences of integers 

{q,}~=t and {r,}7-~, for which 

i lR .... < and IIR', .  ,,,. II < 
Flxjli-q.+~ 

for all n. 
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Fix now n and apply  T h e o r e m  1.2 to the ope ra to r  Titejj~", . . . .  It  follows that  

there  exists a subset  ~.  of {q. + 1, q. + 2  . . . . .  2q.} so that  I,r. I_- > cq./M 2 and 

for  any choice  of  {aj}j~..  

Cons ider  the set  A = O ~ = 1  o'n and obse rve  that,  for  each n, we have  

t A n { l , 2  . . . .  , 2 q . } l > l ~ o l >  c 
2q, = 2q, = 2 M  2 ' 

i.e., densA>-c/2M 2. Fur the rmore ,  for  any choice of {aj}7=l such that  

E~_, Z~, . .  l aj 12 = 1, we have  

jEo'. 2 

Z j~o'. = t j~o-. --II.=, ( " ' - - "  .... ) y~ ~'x'll~- o~, II (" .... + " ' " )  y a'~'ll~ 
>=( ~=~II(R,.-R,o ,) ~oa, x, :j - ~= "r. ll,~ a,x, ll: 

It follows that  

.~=~ II ~o [ z ~ II (R ) ~.  a,x, ll: (S + c/2f- > 2 - = ajxj ,. ~ + R ',. 
j = j 2 

>--c2 ~ E [a,] 2-T2M2 
n - - 1  j e a n  

> 3c2/4, 

i.e. 

S ~ (~/3 - 1)c/2. 

This,  of course,  comple tes  our  proof .  [ ]  

REMARK. It  is not  t rue in general  that,  for any Besselian sys tem or even  basis 

{x,}~_~, there  exists a set A of integers with d e n s A > 0  so that  {X.},~A is also 

Hi lber t ian .  Indeed ,  fix 0 < a < ~ and consider  the vectors  

f. =c(a)e~"~/txl~; I n 1 = 0 ,  l , 2  . . . . .  



166 J. BOURGAIN AND L. JZAFRIRI Isr. J. Math. 

where c(a) is chosen so that the norm of f, in L2( - ~, ~ )  is equal to one, for all 

n. It is known that these vectors form (under the above condition that 0 < c~ < I) 

a conditional basis in L 2 ( - r  r, 7r) (cf. [1]; see also [20]). The system {f,},+~_~ is 

clearly Besselian. 

Suppose now that there exists a set A of integers with A = dens A > 0 such that 

{/.},~A is also Hilbertian with constant M, for some M < ~ .  Take  /3 = 

A(2-a)/4(1-a) and choose an integer k for which the set Ak = 

A N {1,2 . . . . .  k} satisfies ]Ak ] > Ak/2. Then, by the Cauchy-Schwartz  inequality, 

we have that 

On the other hand, 

f . (x  ) dx>=c(a)[ _ y .  I lldx 
\(1 -a)k'-" x ~ d{] n nEAk ,111 

(Al3'- 'k '* f~/ksin(nx/2) ) >=c(a)\2(l_a)-2 ~ , x o dx 

\2(1 a )  

It follows, by taking into account the choice of /3, that 

c(°~)A/3'/2-~ k"<= M, 
4(1 - a )  

which, of course, is contradictory if k is sufficiently large. 

3. Operators  on /'/,-spaces; 1 -<_ p =< 

The main result of this section asserts that any matrix T with l ' s  on the 

diagonal which acts as a "bounded"  linear operator  on l~, for some 1 <= p <= 

and some n, contains a square submatrix of rank proportional  to n (the 

proport ion being determined by the norm of T) which is well invertible. 

The cases p = 1 and p = ~ are, essentially speaking, known (cf. [4] and [13]) 

though not exactly in the formulation given above. The proof in these two cases 

uses a combinatorial  lemma which asserts that any n x n matrix contains in turn 

a submatrix of size proportional  to that of the original one such that, for each 

row, the sum of the absolute values of the off diagonal elements is reduced to 

one half of what it originally was. The case p = 2 has already been presented in 

Section 1. 
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In the case p > 2, the invertibility results hold also for matrices with "large" 

rows (rather than "large" diagonal, as above). This is no longer true for 

1 -<_ p < 2. In this case, the rank of a n × n matrix with "'large" rows need not 

even be proportional to n. An example of when the rank is as small as possible, 

i.e. of order of magnitude n~-/P'; p' = pl (p  - 1), is given by the natural projection 

from l~ ; 1 < p < 2, onto a well-complemented Hilbertian subspace of maximal 

dimension. 

We begin with our first result. 

THEOREM 3.1. For every 1 <= p <= ~, M < ~c and e > O, there exists a constant 

c = c (p, M, e ) >  0 such that, whenever n >= 1/c and S is a linear operator on l~, o[ 

norm ]1S II <= M [or which the matrix relative to the unit vector basis has O's on the 

diagonal, then there exists a subset o~ o[ { 1,2 . . . . .  n } of  cardinality I ~ I >= cn so that 

II R,TSR,, II < e, 

where R,~ denotes the natural projection from l; onto the linear span o[ the unit 

vectors {e, }i,:,,. 

As an immediate consequence, we obtain our main invertibility result. 

COROLLARY 3.2. For every 1 <- p <= zc, M < ~ and e > O, there exists a 

constant d = d(p, M, e)  > 0 such that, whenever n >= 1/ d and T is a linear operator 

on l; of norm II rll <= M for which the matrix relative to the unit vector basis has l ' s  

on the diagonal, then there exists a subset ~r of {1,2 . . . . .  n} of cardinality ] cr ] >= dn 

so that R~ TR,, restricted to Rfl"p is invertible and its inverse satisfies II ( R,, TR,, ) '[I < 

l + e .  

The proof of Theorem 3.1 requires some preliminary results. The first asserts 

that any bounded linear operator  on an l'~;-space is also bounded on 17 provided 

that it is restricted to a suitable set of unit vectors of " large" cardinality. This 

result is, in fact, a direct consequence of a theorem from W. B. Johnson and L. 

Jones [14]. We prefer, however, to give a direct proof based on an exhaustion 

argument. 

In order to distinguish between the different norms of the same operator,  we 

shall denote the norm of an operator  S on l~, by 11S lip. Also, as usual, Ko denotes 

the constant of Grothendieck. 

PROPOSITION 3.3. For every 1 <= p N ~ and every linear operator S: l~--~ I~, 

there exists a subset r I of {1,2 . . . . .  n} such that 1771>= n /2 and 

II R.SR  IL-  <-- 4K , II S lip. 
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PROOF. We first observe that it suffices to prove the result for 2 <  p-<_ 

since, otherwise, we pass to the adjoint S* of S. 

Suppose now that the assertion is false for some operator S: l~--+ l~. Then, as 

in the exhaustion arguments presented in Section 1, we can construct subsets 

rt D r e D ' ' "  Dr,,, 

of {1,2 . . . . .  n} with ]rml~n/2  and vectors {y,}?_, in l~ such that Ily, ll2--1, 
R . , y ,  = yi, 

][ g.~iSyi 112 > 4KG ]] S lip, 1 _-< i _-< m, 

and if y, = Y.j~, b~.jej ; 1 <= i <-_ m, then the set 

is of cardinality Irm+~l < n/2 (with the convention that b~,~ = 0 when ]ff  r~). Note 

also that 

m=21ly ,  ll~- -> Y~ ~lb,,,t2>=n/2. 
i--I ]~'rm*l i= l  

By using Grothendieck's inequality in the form presented in [17] (see also [21] 

1.f.14) with the convention 1/p = 0 when p = m, it follows that 

\ 1/2 

= ISy,  12 
2 

--< n i/~-~/p Sy, 2 
P 

Ll(a <= K~, ll S ll~n ''~-''~ ly, l: 
P 

= Ko l' S IIpn "e-'/P ll,=~ ( ~= l b,,, - e, IIp. 

However, the above procedure yields that 

Ib,.,l'<=2, 
i=1 

for all 1 < j =< n, and, therefore, we conclude that 
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which is contradictory. []  

Proposition 3.3 together with the Riesz-Thorin interpolation theorem yield 

immediately the following result. 

COROLLARY 3.4. For every 2 <-- r < p or 2 >= r > p >--_ l and  every linear 

operator S on Ip, there exists a subset r t of  {1,2 . . . . .  n} such that I rt I >-- n /2  and 

II R,SR. II, -<- 4K6 II s II.. 

Corollary 3.4 cannot be improved beyond the range 2 -<_ r < p or 2 _-> r > p => 1. 

This fact is illustrated by two examples which will be presented in Section 5. 

PROPOSITION 3.5. There is a constant K < ~  with the property that, for any 

0 <  8 < 1/e "2, one can f ind an integer n (8 )  such that, whenever n >= n(8), 

1 < r < 2 and S is a linear operator on l"~, then there exists a subset "O of  {1,2 . . . . .  n} 

of cardinality I-Ol = [~n], for which 

IIR~Sx II, --< K(82nl( r' - 2 ) ) ' " .  liSx I1,, 

if x @ 17 has support of  cardinality <-_ [82n]. 

PROOF. Fix & r and S, as above, and put h = [~:n]. Then, for each subset ~r 

of {1,2 . . . . .  n} of cardinality Io'l = h, take e =~ and select an e-net  .~(~r)in the 

unit sphere of [Se~]~<,, considered as a subspace of 17, such that 

t ~(<,)1--< ( 2 / ~ )  ~ = 4 ". 

Put 

~ =  U { ~ ( < , ) ; ~  c {1,2 . . . . .  n}, I~ I = hi  

and let {so, }7 ~ be, as usual, a sequence of independent random variables of mean 

over some probability space ( fLE, /x)  which take only the values 0 and 1. 

Then, with 

we have 

/ } J =  max ~lc, l~,(o0;¢= c,e ,E~g dtx(~o) 
1 i = l  i = l  

,,,E }),m <= I c, ; c = c~e~ ~ 
i = l  rn i = l  
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However ,  by Proposi t ion 1.8, there exists a constant  A < ~ so that 

Z Ic, l¢, ( r ' - 2 ) l o g ( l l a ) /  ' 
i = l  m 

' ~  n n for any choice of c = ~,=l c,e, in l, with I[c II, = 1. Note  also that, by Stirling's 

formula,  

i.e. 

l o g l ~  } 62n ( log 8e + 2 l o g ~ )  <= 56_ n 1 <  =< l o g ~ = 5 m .  

Consequent ly ,  

J -< I q3 II/"a ( ( r ' -  2)ling(I/6))'/"------- 2AeS(82n/(r ' -  2))'"'. 

Observe  now that one can find a point ¢o., in the set 

( ] = { w  E fl; Sn/2<-- ~ ~(°J) 

such that 

I c, l ~ ( to,,) <= 2AeS( g2n /(r' - 2 )) '/'', 
i = l  

_ _  x ~ n  for all c - ~ l  c~e~ @ ~. The proof  can be now comple ted  by taking as r/ any 
subset  of 7 -- {1 <= i <_- n;  ~(o9,,) = 1} which has cardinality [8n/2] (note that  

171 8n/2). [] 

PROPOSITION 3.6. For any 0 < • < 1/ e e" and M < o% one can find a constant 

d = d(8, M)  > 0 such that, whenever 1 < r < p < 2 and S is a linear operator on l~ 

of norm [IS lip <= M whose matrix relative to the unit vector basis has O's on the 

diagonal, then there exist a constant D,, depending only on r, and subsets "0~ and I" 

of {1,2 . . . . .  n} such that Irll[ = [dn],  I,rl = [6dn],  r/l D ~- and 

[[ R.Sx lit <= D, (~2dn)'"'(11R,,Sx [l, + It x II,), 

for all x ~ [e,],~.. 

PROOF. Fix & M and S, as above.  By Corol lary 3.4, there  exists a subset  "0~, of 

{ 1 , 2 , . . . ,  n} so that I r/,,t => n/2 and 

II R.oSR,o <= 4K M. 
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Thus, by Theorem 1.6, one can find a constant d = d(6, M ) > 0  and a subset r h 

of rl0 such that nx = ]rl, I = [ d n ]  and 

]]R,,SR,,[I~.<6"-. 

Furthermore,  by applying Proposition 3.5 to the operator  R , , S R , ,  with r 

satisfying the condition 1 < r < p, we deduce the existence of a constant K,, 

depending only on r, and of a subset ~" of "rh, for which Ir l  = [6dn] and 

II R .S ,  [I, <- K, ( 62n,)'~" l[ R ,, Sx [I,. 

whenever x @ R,,l," has support of cardinality <=[62n~]. 
The main difficulty encountered in the present proof derives from the fact that 

I r I is larger, by 1/6, than the cardinality of the support of x. for which the above 

inequality is valid. In order to overcome this problem, for x = E~ .  x~e~ E [e~]~., 

we put 

w.={i~;Ix,  j<llxlJ./(6~-n,)'"}, y = R . . x  and z = x - y .  

Then z = E~._. .  x~e, satisfies 

l) x II; => Jl z )J;--> JJ x It:l ~" - -  "~ J /6%,  

i,e. 

j r  ~ ~. I < 6 ' n , ,  

and we are allowed to apply the above inequality to z. It follows that 

I[ R.Sx II, -<-II R.Sy Ill + II R.Sz I(, a i r  I ''2 l[ R.Sy 112 + K. (62n,)'/" l[ R 4, Sz It,. 

However,  by the estimate for the norm of R.,SRn,  as an operator  on l~. we 

obtain that 

][R,SyJl ,<6~lJyl] ,=6- ' .  Ix, I 2 <6~I~U-IIxBI(62n,) '''. 

We also have that 

and 

I1R., Sz II. a II R. ,  Sx tl. + II R .,Sy II. 

II n~, Sy fir a .'," "~. II Ro, Sy I¢-. =< 8~"11. fir. 

By substituting these estimates in the inequality above, we get that 

[[R.Sx[I, a 62171 [IXl[r/(62n,) ''' + K,(6Zn,)'/~'[llR.,Sx][. + 6~'r'l]x II.] 

a (6 + g.62"')(6'-n,)'"llx ]l. + K.(62n,)'"'llSx II. 
which proves the assertion. [ ]  



172 J. B O U R G A I N  A N D  L. T Z A F R I R I  Isr..1. Math. 

In general, an operator from an L-space  to an Lq-space; 1 < q < 0% need not 

be q-absolutely summing. The next result gives a condition that ensures this fact. 

PROPOSmON 3.7. Let "r be a subset of {1,2 , . . . ,  n} and 1 < r < p <2,  and 

suppose that W is a linear operator on l~ which satisfies the condition 

II R.Wx II, ---- C .  (11 Wx II, + II x II,), 

for some constant C < ~  and all x E[e~]~,.  Then there exists a constant A,,  

depending only on r, such that R , W * R ,  is p'-absolutely summing when it is 

considered as an operator from l~ into l;, and 

zro,(R~W*RT: l"~----) l~,) <- m, . CII Wllpn l/r-Up. 

PROOF. Put W~ = R~WR,, take vectors {u,}~=l in l~ so that (XLIlu, IP')= < 1 

(coordinatewise) and choose elements {v~}~=, in l~,, for which 

~] II v, II~ =< 1 and II W ,  u, lip' ~,  * = (W,u , , v , ) .  
i = 1  i = 1  i = 1  

Let now {q~}h=~ be a sequence of p-stable independent random variables over 

a probability space (O,X,/z) which are normalized in L~(~, E, /x). Then 

fo ll) 
, \ 1 / , 1 1  

+ll(Io 
<= A ,C  ] Wv, ]P) + [ ° 

where A, denotes the norm of ~ol in L , (~ ,~ , /~) .  It follows that 
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w . u ,  II;: <--- I We, I p Iv, I p , 
i = l  p 

and this completes the proof. [] 

PROOF OF THEOREM 3.1. First, note that there is no loss of generality in 

assuming that 1 =< p =< 2 since in the case 2 < p < co we can consider the adjoint 

operator S* instead of S. 

The Case p = 1. As we have already mentioned in the introduction to this 

section, the case p = 1 is actually known, though not exactly in the formulation 

of Theorem 3.1. In this case, the matrix (a,.j)~,j , of S relative to the unit vector 

basis of l~' satisfies 

~ la,,,l_-<llSll,; l<-_i<-_n. 
i = 1  

Thus, by [4] or [13], for each e > 0, there exists a subset m of {1,2 . . . . .  n} of 

cardinality 1o', 1=> ne2/16ll s 117 such that 

fa,,, I_-< e; i E ~rF. 
jE~r~ 

The.Case l < p < 2 .  F i x 0 < 6 < l / e  ~2and l < r < p  so t h a t 2 / r ' > l / p ' , a n d  

let S: l~,---> l~ be a linear operator whose matrix has O's on the diagonal. 
Let d = d(&][SI]p)>0, Dr < ~ ,  ~" C 77, C {1,2 , . . . ,  n} be given by Proposition 

3.6 so that n, = I~, [ = [dnl ,  171 = [~dnl  and 

I1R.Sx I1~ <-- C(ll Sx II. + [I x I1,), 

for all x E [e,]~,, where C = Dr(62dn) '''. 
Since the operator W = R,,SR~, satisfies the conditions of Proposition 3.7, it 

follows that 

zr.,(R.S* K :  l " ~  l~,) <= A,Cl[Sll.nl "-~'" 

<= 2A,D~ II S II,,5~,,'-'/,' I r l '/.', 

where A, is a constant depending on r only. Thus, by the Pietsch factorization 

theorem [24], there exists an operator U: l~,---> lp, with II ull.,--< 1 and a diagonal 

operator V: l"~--->l~,, defined by Ve, =A,e, ; i@~', and Ve, = 0 ;  i Z r ,  so that 

R,S* R, = UV and 

IA, I' _ < - g [ ,  

where K = 2A,D, [I S Ilpfi 2`''-''p'. 
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Consider now the set 

and note that 

~r={i ~ r ; l a ,  l < 2 ' " K }  

1~1~1~1/2. 

Moreover, since R,,SR,, = R,,V* U 'R , ,  and V *  ei = )qe~ ; i E r, it follows easily 

that, for any x E l~, we have that 

II R.SR,~x II. = II R,. V* U* R,.x lip 

<=(maxlA, , ~  

--<2KIIxllp. 

Hence, if e > 0 is given and 8 is chosen appropriately then II R,,SR,, lip < e. This 

completes the proof since the case p = 2  has already been considered in 

Theorem 1.6. [] 

We pass now to the study of operators on l~,-spaces whose matrices have 

"large" rows rather than "large" diagonal. 

We first give an estimate for the rank of such an operator. 

PROPOSmON 3.8. Let p > 2  and let T: I"p-+ l~, be a linear operator such that 

II Te, [Ip = 1; 1 <= i <= n. Then 

rank r ->_ n/l[ Tlle. 

PROOF. If k = rank T than it is well known that the 2-summing norm rr2(T) 

of T satisfies (cf. [24]) 

Hence 

~2(T) ~ II T[I. V~. 

n 1/2 

<= ~'z(r)sup I x*(<)l-" ; x* ~ l"~., llx*ll~,<= l } 

<--II Tll. V~, 

which completes the proof. [] 
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Actually,  an opera to r  with " l a rge"  rows on 11;; P > 2 ,  has also a " l a rge"  

permuta t ion  of the diagonal when it is restricted to some set of unit vectors 

which is propor t ional  to n. 

PROPOSITION 3.9. F o r e v e r y p > 2 a n d M < ~ z ,  t h e r e e x i s t s a c = c ( p , M ) > O s o  

that, whenever T is a linear operator on 1;i of norm I1T[[ <= M for which I1Te, llo = 1; 

1 <= i <= n, then there exist a subset rl of {1,2 . . . . .  n} and a one-to-one mapping rr 

from rl into {1,2 . . . . .  n} such that 

[~l>=cn and le*..Te~l>-_c, 

for all i ~ 7, where {e*}'/. , denote the unit vectors in l',:,. 

Put x. = Te~ ; l <= i <= n, and observe that,  by Gro thend ieck ' s  PROOF. 

inequality,  

Ix, <=K, ll rlln '''. 
i = 1  p 

Then  a simple interpolat ion argument  shows that 

IIm x,xll 
p 

where  d = I / (K(; .  II r l l )  -~''' -''- Put 

and observe  that 

Now split o- into mutually disjoint subsets {o'j}~=, so that 

Put 

x ll 

e * ( m a x [ x ~ ] ) = e * [ x j [ ;  I E o - .  j = l , 2  . . . . .  n. 
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and note that, for each j E 77, there exists an element 7r( j )E tr, 

7 r ( j ) / I t ( k ) ,  whenever j, k E ~ and j / k .  Finally, observe that 

d~n/2 <= l l ~  X"" max lx~ 

LI II = E  X,,,'maxfx, I 
j ~ r  I < ' i S n  p 

such that 

i.e. 

= ~ II x,,,x, I1~ 

~IITII"I~I, 

I~l~ d2n/211Zll p. [] 

COROLLARY 3.10. Foreveryp>=2 a n d M < ~ ,  thereex is t sad  = d ( p , M ) > O  

such that, whenever T is a linear operator on lp of norm IITII <- _ M for which 

II Te, lip = 1; 1 <= i <- n, then there exists a subset ~r of {1,2 . . . . .  n} of cardinality 

{ tr I >= dn so that 

for any choice of scalars {ai} ~ .... 

PROOF. For the case p = 2, the matrix corresponding to the operator  T * T  

has l 's  on the diagonal and the proof can be completed by using Corollary 3.2. If, 

on the other  hand, p > 2 then it follows from Proposition 3.9 that w- ' T~N ... .  

where 7r ~ is the corresponding permutation operator,  has " large" diagonal, and 

again the proof can be completed by using Corollary 3.2. [] 

The results obtained above for matrices with "large" rows acting on l~,-spaces 

with p > 2 are, in general, false in the case of 1 -<_ p < 2. Even the rank of such an 

operator  need not be proportional to n. 

PROPOSITION 3.11. Let 1 < p < 2 and let T: l"o---~ l"~ be a linear operator such 

that II Ze, [1, = 1; 1 <= i <- n. Then 

rank T _-__ .2'p/11 TIIL 

PROOF. The argument is identical to that used in order to prove Proposition 

3.8. I[ k = rank T then, again, 
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Ll ) n ''2= IlZe, 

~ Ir~(T)sup I x*(e,)l ~ 

--< II T I1" k"~.  ~"~-"" ,  

;x*~l;,,llx*ll.,~l} 

which yields our assertion. [] 

The estimate from below for the rank of T given by Proposition 3.11 is 

asymptotically sharp, as is shown by the following example. The case p = 1 is 

absolutely trivial; it is easily seen that there are operators on 17 with 11 Tel 11, = 1 ; 

1 <= i =< n, and rank T = 1. 

PROPOSITION 3.12. For every 1 < p < 2, there is a constant Nip and, for each 

integer n, there exists a linear operator T: l~--~ l~, of norm <=Mp such that 

IlZe, l lp--1;  l <= i <-_ n, but 

rank T = [n2/P']. 

Essentially speaking, this property is shared by all the orthogonal projections 

from l~, onto well-complemented Hilbert subspaces of l~, having maximal 

dimension. 

PROOF. Fix 1 < p < 2 and n. For sake of simplicity of notation, we shall work 

with the function space L~, instead of l~. By a result from [3], there exists a 

constant Cp < ~ such that, for each n, the space Lp, contains a subspace Hm of 

dimension m = [n 2/p'] for which d(Hm, 17) ~ Cp. By B. Maurey [22] Theorem 76, 

there exists a constant C~ < o% an element g ~ L," with II g II, = 1, where r satisfies 

1 1 1 
2 p' r 

and a linear operator from gH,., considered as a subspace of L~, into L~, such 

that II S II--< C~, and 

S(gx)=x; x~Hm. 
By H61der's inequality, we have 

llgz 112 <_- Ilgll. • It: ll.. = II z Itp,, z E L ~ , .  

On the other hand, if x E H,. then we also have 

II x I1~, ~ II s I1 II gx I1~ ~ C;ll gx 112, 
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i . e .  

Ilgxll2--<Ilxtlp ~ c ; t lgx 1t2, 

for all x @ H,,. In a similar way, we can show that 

II gy lip =< II y I1-~ ~ c;ll gy lip, 

for all y E grim, considered as a subspace of L~. 

Let R be the orthogonal projection from L" onto its subspace grim and 

denote by Mg the operator acting as "multiplication" by g. Then 

P = M,-,RMg 

defines clearly a projection from Lp. onto Hm and, by the above estimates, 

l[ Pz 1[~,' = II g-' R (gz )lip' <= C'pH n (gz )ll.~ --< C;ll gz 112 ~ c;ll z lip,, 

for all z E L~,, i.e. IIPII--< c ; .  By duality, we conclude that P* is a projection 
from Lp onto its subspace g2H,,, and, moreover, that P* = MgRMg-,. 

Now, observe that 

.2'p'/2 _-< m = II R II~s = .  ~ II Re, 11,2 
j - 1  

_-< (c;y. ~ II gRe, 112. = (C'p) 2 n ~ II P* (ge,)ll~ 
j = l  /= I  

since the unit vectors {ej}~'=l have norm equal to n -1/2, when considered in L2. 
Suppose that 

g =  ~ gje,. 
i=1 

Then (Z~L, I gi I ' /n)' '  = II g II, = 1 from which it follows, by using H61der's inequal- 

ity, that 

t 2 n _-2(Cp) ~ Ig, l~.llP*(n'%)ll2p 
i=1 

= 2(C~) I g, I' " ,,P*(n"Pe,),,; '\2/p' 

--Lit-p) n • liP*(n"Pe,,llp'l m 

/ 

Hence 
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n < 2~"2(c'~) " .  ~ IlP*(n'%)llg', 
/ = 1  

which yields that the set 

o" = {1 _-</" <= n ; l l  P*(n''e,)ll,, --> 1 /2  ''p'+''-" • c 'e}  

has cardinality 

I , ,  I >= n l2'+~"~-( C'~):~'. 

The proof can be now easily completed by constructing an operator T: l~---> I~ 

with II Te~ lip = 1 ; 1 <= i <- n, so that its range is contained in g~-Hm, i.e. rank T = 

[n2'"']. [] 

While Proposition 3.9 is clearly false for 1 =< p < 2, in view of Proposition 3.12, 

a weaker version still holds. 

PROPOSmON 3.13. For every l < - p < 2 ,  M < =  and c>O,  there exists a 

d = d (p, M, c) > 0 so that, whenever T is a linear operator on l"p of norm II T [I =< M, 

for which 

f /~e'Te'll de>=cn '/p, 
P 

then there exist a subset r I of {1,2 . . . . .  n} and a one-to-one mapping ~r from 71 into 
{1,2 . . . . .  n} so that 

I'ol>=dn and le*,,,Ze, l>-_d, 

for all i E 7. 

PROOF. The condition imposed above on the vectors x~ = T e i ;  1 <= i <= n, 
implies that 

I1(  )"211 Ix, ! 2 _--- cn"~. 
P 

On the other hand, it is entirely trivial that 

I x, t s = x, < Mn"P.  
P 

Therefore, by an interpolation argument as in the proof of Proposition 3.9, we 
conclude that 

n "~ I / 2  n 
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which yields that 

II max '  x' ] I 1 , ~ ,  p >=c2m-P)/Mpj'2-p~. 

The rest of the proof goes exactly as in that of Proposition 3.9. [] 

4. Applications to the geometry of Banach spaces 

The results proved in the previous section will be used in the present one in 

order to solve some problems concerning the existence of "well" complemented 

copes of l~,-spaces in Lp which were raised by W. B. Johnson and G. Schechtman 

[13]. The main part of this section is devoted to a study of those subspaces of Lp 

whose euclidean distance (i.e., the distance to a Hilbert space of the same 

dimension) is maximal. 

We discuss first the isometric version. It is well-known that the euclidean 

distance of an l~,-space satisfies 

d,~ = d ( l ; ,  17_) = n r"p-'/2r, 

for any n and 1 =__ p =< ~. Less trivial is the fact that, for a fixed n and 1 -< p _--- ~, 

I~, has the largest euclidean distance among all the subspaces of Lp of dimension 

n. For p = 1 or p = ~, this assertion is part of a considerably more general 

theorem of F. John (see e.g. [10]) which states that any n-dimensional Banach 
space has euclidean distance_-<n t/2. In the case l < p ~ 2 ,  the fact that the 

euclidean distance of any n-dimensional subspace X of Lp satisfies 

d× = d (X ,  1~)_~ n I"p-'/2r, 

was proved by D. R. Lewis [19]. 

This maximality property of the euclidean distance of l~,-spaces raises the 

question whether these spaces are the only subspaces of Lp which have a 

maximal euclidean distance. For p = 1, the problem was settled in the positive by 

T. Figiel and W. B. Johnson [9]. We prove below a similar assertion for 

1 _<-p < 2. The case p > 2 is still open. 

THEOREM 4.1. Fix n and 1 < p < 2. Then any n-dimensional  subspace X of  

Lp whose euclidean distance is maximal ,  i.e. 

dx = n lIp-112, 

is necessarily isometric to l~. 
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We first need a result which, in particular, gives a simple alternative proof to 
the aforementioned theorem of D. R. Lewis in the case 1 < p < 2. 

PROPOSmON 4.2. Fix n and l < p < 2 ,  and let (l-l,'Z, lx) be a probability 
space. The euclidean distance dx of an arbitrary n-dimensional subspace X of 
L17 (fl, Z, I~ ) satisfies the estimate 

dx <I1T[I.I1T-'fI<II T-'II ~ HF× '-17'~< n ''17-''~ 

where 

F× (o.,)= sup{lf(~o)l ; f ~ x ,  Ilfllp ~1} 

i.e. 

i.e. 

IlZll~l .  

On the other hand, by using H61der's inequality, it follows that, for any f E X, 

we also have 

f I(Zf)(co)[17F×(~o)""-P/2'dlz(~o) <=11 Trill" II ~ ,p0-,/2, Ilfll; = i X l i p  , J~ 

liT 'II~IIF×IIF p'2. 

Since, by definition, dx ~ It TII" II T-'II it remains to show that liE,, II, ~ n"17. 
By using a well-known characterization of Hilbert spaces, due to S. Kwapien 

[18], together with a result of N. Tomczak-Jaegermann [30], we get the more 

trivial estimate 

dx <-- T~g~(X) • C~g~(X) <= Kn ,,p-,,2, 

and T: X---~ L2(~,'Z, I.t) is the linear operator defined by 

T f  = f . F~  '~ '; f ~ X .  

'PROOF. Observe that, for any f E X with Ilfll, --1, we have that 

II Tfll ~, = f~, If(~)l=F,,(~o) ~ 2d/-t(~°) 

-- fo [f(o~)/F.(~)l~-'d~(~o) 

<--f,~ If(~°)l~d~('°) , 
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for  some constant  K < ~, independen t  of p and n, where  T ~ ( X )  and C ~ ) ( X )  

denote  the gaussian type 2, respectively cotype 2, constants of X. 

Ano the r  argument  of an e lementa ry  nature  which proves the same est imate 

for the eucl idean distance as above can be found in [28]. 
It follows that there exists a sequence {f,}7 ~ of vectors in X so that 

Jail 2 <= a, <= Kn  '/" ,n . [ a e , 
i = l  p "~ 

for  any choice of scalars {a,}','=~. Since any f G X  with Ilfllo<_-I can be rep- 

resented as a linear combinat ion  f = ET-, bJ,, for  a suitable choice of {b,}'/=t, we 

conclude that 

r f(to)l--< ~ l b ,  I" I f, (to)F 
i - I  

_<- !b,I 2 • [L (to)[ ~ 
i=1 

~ ({O 2 

for  all to E f L  Hence ,  also the maximal funct ion Fx satisfies 

E~(to)~ I i, (toll-' , 
i = l  

for  all to ~E D., and thus 

]]Fx lip --- If, l: _<X/ e, d e < = K V 7 2 n  ''p 
p i=1 p 

Fix now an integer k andllet fykj deno te  the product  space ~ × ~) × • • - × lq (k 

times) endowed  with the corresponding o'-field ~(k) and product  measure  ~(k). 

Let  X (k) be the subspace of Lp (I-Y k), E ok),/x (k)) obta ined  by the k-fold  tensoriza- 

t ion of X, i.e. 

x 'k '=x®x® . , .®x  

with dim X tk~= n k. The  maximal function F×,~,(to~, to~ . . . . .  tok) of X (k) clearly 

satisfies 

F×,~,(to,, to: . . . . .  tok ) 

->-sup{I g,(to,)l" I g,-(to-,)l""" Ig~(to~)l ; g, ~ x ,  IIg, il~ <-- 1, 1 ~/_--< k} 

>= Fx ( t o l )  ° F ~  ( t o 2 )  " " " F X  ((,-Ok), 
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for all (~o~, oJ2 . . . . .  oJk)Efl ~k~. Thus, by the above estimate for the norm of the 
maximal function, we get that 

KV-~n k'p ~ Ilfx,-Ilo ~ I IG IlL 

i.e. 

By letting k----, ~c, we easily conclude that 

l[ z~ lie <=,  ' '  

thus completing the proof. 

PROOF OF THEOREM 4.1. 

L, (fLE, p,)whose euclidean distance satisfies 

dx = n i/p i/2 

Then, by Proposition 4.2, we get that 

It E~ tl, -- n "~ 

and, furthermore, that 

• gl u p .  

[] 

Suppose now that X is a n - d i m e n s i o n a l  subspace of 

for a.e. ~o in the support A of g. 

We shall prove in the sequel that, for any f ~ X, the restriction f -  )CA of f to A 

belongs to the one-dimensional subspace [g] of Lp (fl, E, # )  generated by g. This 

i.e. 

tl TII = 1. 

Hence, by a simple compactness argument, we conclude the existence of a 

function g E X with II g lip = 1 such that 

= pg(,o)[ F x ( , o )  - d t ~ ( ~ )  I. 
Jl 1 

Since Ig(o))l-<- E,,(~o), for all oJ Ef t ,  it follows that 

~, ]g(~o)/F×(~o)l 2" F~:(co)"dtx(~o)<= ~, ]g(og)/E,~(~o)[ p . Fx(o~)Pdtz(o~) = 1, 
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would imply that 

where 

x = ([g] 0 XG, 

X, = {f E X;  f(co) = O, for a.e. to ~ A}. 

W e  also h a v e  that d im X,  = n - 1 and that 

Fx (to) = sup{A ] g(to)j  + (1 - AP) ',p I f(o~)l ; 0 <= A _<-- 1, f @ X~, llfll~ -<- 1} 

= ([ g(w)[ p + F,, ,(w)") 'Z 

for a.e.  to ~ 1~, which clearly yields that 

IIFx, B = (n - 1) ''~. 

Furthermore, it is easily verified that 

d× _-< (1 + d~g/2 P))'zP 

from where it follows that 

dx, = (n - 1) ''p-re. 

Consequently, X, has the same properties as X if we replace n by n -  1. 

Repeating the procedure for n times, we conclude that X is isometric to 1~. 

In order to prove that fxa E [g], for any f E X, we fix f E X and t > O, and 
note that 

I g (w )+ t f (w ) l<=l lg+ t f l l . .Fx (¢o ) ;  w ~ F t .  

Thus, by restricting this inequality to to C A and taking into account the fact that 

II g II, = 1, we get that 

Ig(a,)+tf(w)l"t -Ig(~)'"_<_ [(fA [g(t°')+ tf(w')lPt -Ig(to')l" dl.t(to') 

for all w E A (use the fact that on this set Fx = I g I). Since p > 1 we obtain, by 

letting t ---* O, t > O, that 

p I g(w)lP-'(sgn g(w)) f (w)  <_- p Ig(w)l p IA [ g(w')lP-'(sgn g(w')) f (w')dt t  (to'), 

i.e. 
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f 
f(to )lg(to ) l g(to')l p (f(to')l g(to'))d~ (to'), 

for all to E A. However, the same inequality holds when f is replaced by - f, i.e. 

f(to)/g(to) >-- fA 

This means that 

fXA = gIA 

thus completing the proof. 

I g(to')IP(f(to')/g(to'))dlx(to'); to E A. 

I I g (to') [g], 

[] 

We pass now to the study of the isomorphic case when we consider 

n-dimensional subspaces X of Lp whose euclidean distance satisfies 

dx >= c n  II/p-I/2] 

for some constant c > 0, independent of n. Of course, one cannot expect to 

prove in this case that X is well isomorphic to l~ but just that X contains a 

subspace Y of dimension k proportional to n which is well isomorphic to l~. 

For p = 1, this fact was proved in [13] (see also [4]) while for 1 < p < 2 it is still 

an open problem. In the case p >2 ,  the assertion is false: there exist 

n-dimensional subspaces of Lp; p >2 ,  which contain copies of l~" only for 

m <= Cn 2~p', for some constant C < ~ .  Such examples are provided by the 

so-called random subspaces, on which the L~- and L2-norm are equivalent (cf. 

[9]). 
The situation is different if we consider subspaces of Lp, 1 < p < ~, of maximal 

euclidean distance (in the isomorphic sense) which are also well-complemented 

in Lp. W. B. Johnson and G. Schechtman [13] proved that such a subspace X of 

Lp of dim X = n should contain, for each e > 0, a well-complemented subspace 

X, of k = dim X, _>- n 1-, which is well isomorphic to l~. They also raised the 

question whether this assertion is true with n J-~ being replaced by dn, for some 

d > 0. The following result shows that their problem has a positive solution. 

THEOREM 4.3. For every 1 < p < 0% M < ~ and c > O, there exists a constant 

C = C(p, M , c ) < ~  so that, whenever X is a n-dimensional subspace of Lp for 

which 

(i) dx >= cn I'lp-''21 

and 
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(ii) there is a projection P of norm II P II ~ M from Lp onto X, 

then there exists a subspace Y of X and a linear projection R from Lp onto Y such 

that 

k k = d i m Y > - = n / C ,  d (Y ,  l p ) = C  and Ilnll_<-C. 

The deduction of Theorem 4.3 from Corollary 3.2 is basically known and in 
the easier case p = 1 can be found in [13]. We give here all the details for the 

sake of completeness. The proof requires the following result, an extension of 
which will be discussed in Section 7. 

PROPOSITION 4.4. For every 1 < p < ~ and K > ~, there is a D = D(p, K )  

such that, whenever {g,}7=~ and {h~}7:, are sequences of [unctions in Lp, 

respectively Lp,, for which 

(i) ll:~7=, a,g, II, =< K(YT=, l a, IP) "p, for all {a,}7_~, 
(ii) 11: 7=, b,h, lip' =< K(ET=, I b, IP) ' 'p, for all {b,}7-,, and 
(iii) (g~, h,) = 1, for all 1 <= i <= n, 

then there exist a subset tr of {1,2, . . . ,  n} with ->- n / D  and a projection R from 

Lp onto its subspace [g~],c~ so that fIR tl_- < D and 

for any choice of {a,}~c.. In other words, the sequence {g~},~. is KD-equivalent to 

the unit vector basis of 171 and its linear span is D-complemented in Lp. 

PROOF. Let {e~}~ and {e*}r_~ denote, as usual, the unit vector basis of l;, 

respectively l;,, and consider the operator T: l;---~ l;, defined by 

Te~ = ~ {g~, hi}e j ; 1 <= i <= n. 
j = l  

It is easily checked that 

[(Tx, Y>I <-- K~II x lip "IlY lip', 

for any choice of x E l ~  and y E l ~ , ,  i.e. HTII_<-K ~. Since, by (iii), e*~Te, = 

(g~, h l )=  1, for all 1-<__i<= n, we can apply Corollary 3.2 and conclude the 

existence of a d = d ( K )  and of a subset tr of {1,2 . . . .  , n} such that 

R¢TR,, restricted to R,,l~, is invertible and its inverse satisfies 

]I(R TR.) '1[ < 2. 

Thus, by (i) and (ii), it follows that, for any g ~ [g~],~,, of the form g = E , ~  a,g~, 
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we have 
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l e a  jE~ 

- I I  g lip/2K. 
i.e. {g~}~c~ is 2K2-equivalent to the unit vector basis of l~ ~l and it remains to show 

that [g~]~c,, is well complemented in Lp. To this end, define the operator 

O: Lp---~ [g~],~, by setting 

Of : ~ (f, h,)g, ; f E Lp. 
j ~ a  

Then, by (i) and linearization, as above, we obtain that 

IIO/11. =<g (f.h,)[ p <-- Ilfllo; f ELp,  

i.e. 

I IQI I<K 2. 

On the other hand, by using twice the inequalities above, we conclude that, for 
any element g = X~Eaa~g~ in [g~]~Ea, 

IIOgll~ --- I(g.h,)l" 2K >=llgll./ag% 

which means that Q, restricted to [g~ ] ~ ,  is an invertible operator whose inverse 
satisfies 

II (O ,.,~,Eo)-' II =< 4K2. 

It follows that 

r = (Oit.,i,~o)-'" O 
is a linear projection from L, onto its subspace [g~],E, with norm II R II--< 4K4- [] 
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PROOF OF THEOREM 4.3. In view of the fact that X is well complemented in 

Lp, the statement of the theorem is self-dual and, therefore, there is no loss of 

generality in assuming that 1 < p < 2. Suppose also that Lp --Lp (fL E, ~),  for 

some probability space (f~, E,/~). 

By the result of S. Kwapien [18] which has already been mentioned above and 

condition (i), there exists a constant Co, depending only on c, so that 

n lIp-l/2 ~ (g) < CoT, (X)= CoY~(X), 

where T2(X) denotes the usual type 2 constant of X (recall that TT~(X) stands 

for the gaussian type 2 constant of X). But, by N. Tomczak-Jaegermann [30], the 

type 2 constant of a n-dimensional space can be computed with only n vectors, 

up to a universal constant. This means that there are a d = d(c)> 0 and vectors 

{x~}?=~ in X such that 

2 > dn lip-l~2 
Xi ~ Xi 

P 

Put y, = x , / l l x ,  II,, 1 _-< i <_-- n, and observe that 

By using H61der's inequality with r = 2/p and r ' =  2 / ( 2 - p ) ,  we get that 

Let {-~j}~'=~ be a partition of 1~ into mutually disjoint subsets such that 

max ] y,(co)l = i yj(oJ)l 

for to E r b ; 1 < j _-< n. Then 

d =/(~-''. n"' ~ II YJX~,II~, , 

and a simple probabilistic argument shows the existence of a subset ~" of 

{1,2 . . . . .  n} of cardinality I r l  => din such that 
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i 
where d~ = d2m(2-P)/2. 

Consider now the functions 

z~ -- I YJ I ' - ' ( s g n  YJ)X,,, ~ Lp,, 

and put ui = P*(zi); j E z. Then 

(y/,u,)=(y,,z,)= ~,, ly,(,o)l'dt~(,o)>=d,, 
i 

for all j E ~', and also 

for any choice of {bj}j~,. 

We would like now to apply Proposition 4.4 to the vectors {yj}j~, and {uj}j~, 
which, essentially speaking, satisfy the conditions (ii) and (iii) there. The problem 

is, however, that {Yi}J~, need not satisfy (i) and, therefore, should be replaced by 

a different system of vectors. To this end, take a so that 4a ~-2/p,. KaM = dl and, 

for each j E r, put 

vj=ujx~j and w j = u j - v j .  

Then, for j E ,r, we have 

(P(Y,X~,), uj) = (yj, v~) => d, - (yj, w:). 

However,  by H61der's inequality, 

On the other hand, 

(/~r ) P'/2-1 
Iw~lp'<__lujl2.1w, tp'-2<_a,'-21u, r lu,  I = , 

from which it follows that 

j E T ,  
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t/p' \ 1/2 

Thus, by Grothendieck's inequality and the choice of a, we get that 

B P' 

<= a ,-2/p' . K ~ M  I ,r I 

= d,l 'l/4. 

A simple probabilistic argument shows that there exists a subset r~ of r of 

cardinality I z~ I - [r I/2 >= d~n/2 for which 

I(y,,wi)l<=dl/2; jG_'c,, 

i.e. 

(P(YiX~), ui) -> dr/2; j ~ ~-,. 

In order to complete the proof, we now apply Proposition 4.4 to the functions 

gj = P(YjX6j) E X and by h~ = uj /(gj, u~) ~ Lp, ; j ~ ~q. [] 

Another  problem raised in [13] is whether any copy of l~ in Lp ; 1 < p < ~, 
contains in turn a copy of l~ which is well complemented in Lp with k 
proportional to n. The cases p = 2 and p = ~ are entirely trivial while the case 

p = 1 was solved in [13] and [5]. We solve here the case 1 < p ~  2, again in the 

positive. 

THEOREM 4.5. For every 1 < p < oo and M < ~, there is a constant A = 

A(p ,  M )  < ~ such that, whenever {fi}7=1 is a sequence of functions in Lp which 

satisfies 

m- '  la, l" =< a, =<m la, 1P , 
i = l  p 

for all { a, }7:,, then there exist a subset cr of { 1,2 . . . . .  n } of cardinality I or ] >= n / A  

and a projection R from Lp onto [~] ,~  with IIRII<=A. 

PROOF. Since both ]1(E7=1 [~ [P) '/p lip and II(ET=~ If~ 12)1'211p are between M - ' n  lip 

and M -  n ~/p we conclude, by a simple interpolation argument, that 

[max]f~ll I >~ nt/p / M  (2+p)/12-pl, 
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provided, of course, that p ~  2. Then, exactly as in the proof of the previous 

result, we find a c = c(p, M) > 0, a subset r of {1,2 . . . . .  n} and mutually disjoint 

subsets {'0~},~ of ~ so that ]rl = cn and 

f l[~(,o)l~d~(,,,)~c; iE , .  
i 

The proof can be completed now by applying Proposition 4.4 to the functions 

g~ = ~/fn, If, (¢o)[Pdlx(w) and h, = [f~ [P-'(sgn ~)" X~, ; i E r. []  

REMARK. Proposition 4.4 can be reformulated as a factorization theorem 

which improves a recent result of T. Figiel, W. B. Johnson and G. Schechtman 

[11]. More precisely, it follows from Proposition 4.4 and some of the arguments 

used to prove Theorem 4.3 that, for every 1 < p < m and M < m, there exists a 

constant C = C(p, M ) <  m such that, whenever T: l~,--+ Lp is an operator  of 

norm =< M satisfying the condition 

( , )  ll(a )ell I Te, I" -->n I'p , 
P 

then there exists an integer k >= n /C  and an operator  R:  Lp ~ l~p with I[ R II <= C 

such that the identity operator  I on l~ factors through T as 

I = R T J ,  

where J is the formal identity map from I} onto a subspace of l~, generated by a 

certain set of k unit vectors. 

This factorization result is an immediate consequence of Proposition 4.4 and 

the fact that (*) implies that 

for some constant c = c (p, M)  > 0, which further yields the existence of a subset 

cr of {1,2 . . . . .  n} with I c r I=_ > n / C  and of mutually disjoint subsets {A,}i~ so that 

II)c,,(Ze,)llp>-_c; i ~o-. 
In the aforementioned paper [11], the authors prove a weaker factorization 

theorem asserting that, under the same assumptions, there are a k, as above, and 

operators J, and R, with II Re II < C; e E { -  1, + 1} k, so that 

I = f R~TJ~de. 
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5. "Unbounded" operators on 17-spaces: 1 =< r ~ oo 

The invertibility results discussed in Sections 1 and 3 apply to "bounded"  
n operators on/p-spaces; 1 -<_ p < ~, in the sense that at least one of the constants 

appearing in the various statements (measuring either the cardinality of the set 

of vectors onto which the operator  is restricted or the norm of the inverse) 

depends on the norm of the given operator.  

In the present section, we discuss some unexpected invertibility theorems. The 

main feature of these results is that, given a n × n matrix with l ' s  on the diagonal 

which acts as a "bounded"  operator  on some l~-space; 1 _-< p _-< 0% one can find, 

for a whole interval of values r, a submatrix of rank proportional to n which is 

"well" invertible on 17. Furthermore,  the constants appearing in the statements 

depend only on the norm of the matrix as an operator  on the original l~-space 

and not on the value of r under consideration. 

We now state our main result. 

THEOREM 5.1. For every l <-_p<-_~ and M < %  there exists a constant c = 

c(p, M ) >  0 such that, whenever T is a linear operator of I; o[ norm I[ TItP <= M 

whose matrix relative to the unit vector basis has l '  s on the diagonal, then, for any 

l <-_ r <= p if 2 < p <= o% or, for any l <= r <= 2 if l <- p <= 2, there is a subset tr of 

{1,2 . . . . .  n} such that [crl>-_-cn and 

a, Te, ~ - - c .  la, I r , 

for all {a,},~. 
Moreover, for every e > 0 (and p and M, as above), there exists a constant 

d = d(p, M, e ) >  0 such that, [or any T as above, one can choose the subset tr of 

{1,2 . . . . .  n} with the property that R~,TR~, restricted to R~17 is invertible and its 

inverse satisfies 

I I t R . T R . )  -' II, < 1 + e, 

for all 2<=r<=p if 2 < p  < ~  or p<=r<-_2 if l=<p=<2. 

The proof of Theorem 5.1 is based on the following generalization of a result 

of J. Elton [8] (see also A. Pajor [23] for the extension to the complex case). 

THEOREM 5.2. For every M < oo and O< p < 1, there is a constant c = 

c(M, p ) > 0  such that, whenever {xi};'=~ is a sequence of vectors in an arbitrary 

Banach space X which satis[ies 

(i) f II E::,  e,x, II de -_> n 
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and 

(ii) I1= < M .  17 I°n ' 
]:or every subset r I of {1,2 . . . . .  n}, then there exists a subset ~r of {1,2 . . . . .  n} so that 

[o'l>=cn and 

for any choice of {a,},~. 

PROOF. The difference between Theorem 5.2 and the aforementioned result 

of J. Elton is that, in the statement above, the vectors {x,}L, are supposed to 

satisfy condition (ii) instead of the weaker assumption of uniform boundedness. 

In order to overcome this difficulty, we shall replace the vectors {x~}L~ by 

another sequence {:f~}L~ of uniformly bounded functions on the closed unit ball 

of the dual X* of X. 

Since the statement of Theorem 5.2 involves n vectors there is no loss of 

generality in assuming that the underlying space X is n-dimensional and, thus, 

that the closed unit ball K of X* is norm compact. 

For each x ~ X and f ~ K, define 

2(f) = f(x), 

and note that ~ is an element in the space C(K) of all the continuous functions 

on K so that 

II- = sup I  (f)l = llx II. 
f~K 

Take now A = (4M) '"  and, for any x E X, define the A-truncation ;~ E C(K) of 

£ in the following way: 

2(f)  if I .~(f)t~ A, 
.~ (f) = A if ~ (f) > A, 

- A  if ~ ( f ) <  - A ,  

Let us also introduce the notation: for f E K, set 

~+(f)={l<=i<=n;2,( f)>A},  71 ( f )={ l<=i<=n;£c , ( f )<-A}  

f e K  

and 

~( f )  = ~+(f) U "9-(f). 

Then, for any choice of f @ K and signs e~ = + l, we have 
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i=1 i=l  

which yields that 

ien+(f) iEn-(f) 

i.e. 

i=l  i=l iE~(f) 

On the other hand, in view of condition (ii), 

A [ ~?÷(f) l <-- ~ £ (f) = ~ x, =< M[ 77÷(f) ]"n '-', 
ien+(D i~ f) 

and, similarly, 

t ~+(f)l ~ (M/A f'"-'~)n 

I n-(f)l ~ (M/A)  '/('-p'n. 

By using again condition (ii), we get that 

-_ M(I n+(f)t  ° + I n - ( f ) t " ) .  '-° 

=< (2M "(1-")/A "/"-"))n. 

However, the choice of A made above ensures that 2M~/"-P)/A ~/C~-°~ -2,-! i.e., 
that 

E I~,(f)[--< n/2. 
iEn(f) 

Consequently, 

which, by averaging and (i), yields that 

The advantage of working with the functions {x~}L~ in C(K) instead of the 
original vectors {x~},"=~ consists of the fact that the former are uniformly bounded 
by A. Therefore, we can apply the main result of J. Elton [8] in the form stated in 



Vol. 57, 1 9 8 7  INVERTIBILITY OF LARGE MATRICES 195 

the Remark on p. 119 by which there exist a constant d > 0, depending only on 

A and, thus, on M and p, a subset tr of {1,2 . . . . .  n} of cardinality Itrl >- dn and 

reals u and v with v -  u _-> d such that if we set 

U,={fEK;~,(f)<-u} and V,={fEK;~,(f)>-v}; l<=i<=n, 

then the family ( U ,  V~)~, is Boolean independent. This means that, whenever 

tr~ and ¢2 are two mutually disjoint subsets of or, then 

In particular, we get that U, and V~ are non-void, for all i E ~r, which implies that 

u => - A and v N A. Thus, for each i E ~r, we have that 

U~C ~={f~K;fc,(f)<-u} and V~C 'v '~={ f~K;~ , ( f )>=v} .  

Indeed, if f E U~, for some i E or, and e.g. ~ (f) < A then ~ (f) -<_ ~ (f) -<_ u, i.e. 

f E ~ .  If, on the other hand, f E U~ and £~ (f) = A then u => A which implies 

that v > A and contradiction. 
^ ^ 

The inclusion above shows that also the family (U~, V~)~  is Boolean 

independent.  The proof can be now completed by using a standard argument. 

Let {a~}~ be an arbitrary sequence of reals, put 

o ' l = { i E ~ r ; a i > 0 }  and t r 2 = t r ~ t r l ,  

and let ]Co be an element in the intersection 

Then 

i~O" I iE tY 2 

Z la, l - .  Z la, I. 
l e t / I  l e o ' 2  

On the other  hand, by replacing a~ with -a~,  for 

iEEO'2 i E a i  

all i E o-, we also get that 

la, I. 
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Hence, by addition, we finally obtain that 

and this completes the proof in the real case. The solution in the real case also 

implies that, whenever {x~}L~ are vectors in an arbitrary complex Banach space, 

then 

for any real {a~} and some d ' >  0. The proof of the complex case can then be 

completed by using A. Pajor [23] Theorem 3.16. [] 

Before presenting the proof of Theorem 5.1, we need one more result which is 

of interest in itself. 

PROPOSITION 5.3. For every c > O, 1 < r <--_ 2 and every sequence {xj};L1 of 

vectors in 1~ which satisfies 

for all {ai}~=,, there exists a subset r of {1,2 . . . . .  n} such that IT!>= nl2 and 

r>-5-'"'.c 1") , aixi [ ai 

for any choice of {ai}i~. 

PROOF. We shall use again an exhaustion argument. Fix c, r and the 

sequence {xi}~1 in 1~, and suppose that the assertion of Proposition 5.3 is false. 
Then we can construct subsets 

z~D 1"2D' '"  D T,, 

with [z,, I --> n/2 and vectors y, = Ei~, , b~,jxj ; 1 <= i <-_ m, so that 

Z Ib,,,l' = 1, Ily, l[,<5-":.c, l<=i<=m, 

and if we set 

• = { ,  <-,  <_- n; tb,, I' 

then I~m+, I<  n/2. This construction yields that m >= n/2. 
W m Let no {q~}~=l be a sequence of r-stable independent random variables over a 
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probability space (f~, E, /x)  which are normalized in LI(O, I~,/z). Since the norm 

in L~-spaces is additive on the positive cone we get that 

5-'"cm" > [I y, 

= n q~i d/z (oJ) 
J ~ ' t  i = 1 1 

=n-l~" fn I1,=~'~1 (~,~=lqOi(°))bi'i)Xi[ll dtx(w) 

--C'-"r' ~; Ib,,,l*) 
/ = 1  

However,  the above construction yields that 

~ I b,,, l' _-< 2, 
i = 1  

for all 1 =< j-<_ n, which implies that 

2 " * ' . 5 - ' " m ' . > n - ~ . ' ~ , l b , . i l , = n - , . ' m .  
j=l i = I  

This contradicts, as easily checked, the fact that m >-_ n/2 .  [] 

PROOF OF THEOREM 5.1. Fix l < = p = ~  and M<~c ,  and let T be a linear 

operator  on l~ of norm ]] Tl[p -<- M whose matrix has l 's on the diagonal. Put 

x~ = ~/'2 Te~ ; 1 <= i <= n, and note that 

Ik Ibll I II II n f ,~,~.,x, ~ =  ~,1,~ .~ ,~ (~,x, 0 , / ~ . .  
since, for each 1 =< j <- n, 

n I / 2  

Consequently, condition (i) of Theorem 5.2 holds in X = IL Moreover,  if ~ is an 
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arbitrary subset of {1,2 . . . . .  n} then 

II, q  LI, x, II 
I P 

i.e., also condition (ii) of Theorem 5.2 holds with 0 = 1/p and M replaced by 

MN/2. Thus, by Theorem 5.2 with the notation c~ = c(MX/2, I/p), one can find 

a subset o.~ of {1,2 . . . . .  n} so that Io.,l>=c~n and 

i I i E c r l  

for any choice of {a~}~,. This already completes the proof in the case r = 1. In 

the case 1 < r N 2, we complete the proof by using Proposition 5.3. Finally, we 

consider the cases when 2 < r N p  or when 1 5 p < 2  and p < r N 2 .  Put 

S = T - I  and apply Theorem 3.1. It follows that there exist a constant 

c2 = c2(p, M, e) > 0 and a subset o.2 of {1, 2 . . . . .  n} such that [o'21 => c2n and 

IIRo SR  II  <  /4Ko. 

Hence,  by Corollary 3.4, there exists a subset or of o-2 of cardinality I o. 1 = [ o'21 _-> 

c2n/2 so that [[ R,~SR,, [[r < e, for all r between p and 2, including 2. Consequently,  

for each such r, R~TR, restricted to R,,l~ is invertible and its inverse satisfies 

II(R TR ) '11, < 1 + 

In particular, we also get that 

( ,~[a , " ) l "<( l+e)[ l ,~a ,  Te~l[r, 

for all { a , } ~  and r, as above. [] 

REMARK. As we have pointed out in the introduction, if p = oo then o. can be 

chosen so that H(R,,TR,,)-']I, < l + e ,  for all 1 <=r<-_~. The same is true, of 

course, if r = 1, by duality. 

We present now two examples which show that the range of restricted 

invertibility given by Theorem 5.1 in both cases: rectangular and square, is best 

possible. 

EXAMPLE 5.4. For each p ~ 2 ,  there exists a sequence {Ep.,}~=, of linear 

operators on l~, such that 

(i) sup° II Ep,, IIp/n"P' < ~, 

(ii) the entries of the matrix associated to Ep,, have absolute value equal to 1, 

for all n, 
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(iii) for any r > p and any subset ~r. of {1,2 . . . . .  n} with sup. n/t  a.  I < m, there 

exists a vector x. ~ [e, ] ~ .  so that lim._~ I1 x. 11, = 1 but 

lim.+= Jl(I + n-' /~'E, . . )x° IJ, = O. 

Before presenting the construction, let us point out some of the features of the 

operators A... = I + n-~/P'E... ; n = 1,2 . . . . .  

(1) sup. II A... lip < ~ and the entries of the matrix associated to A..., which are 

on the diagonal, tend uniformly to 1, as n-+oc. Furthermore,  by (iii), the 

restriction of Ap.. to any set of unit vectors of cardinality proportional to n is not 

invertible in 17, for r > p, i.e. Theorem 5.1 is false for 2 _<- p < r. 

(2) The adjoint A*. of Ap.. has the property that R.A~. .R~  restricted to R d 7  

is not "well" invertible in 17, for any l < = r < p  ' and any crC{1,2 . . . . .  n} of 

cardinality proportional to n. Indeed, otherwise R,.Ap..R~ restricted to Rfl7  

would be "well" invertible in 17, with r' > p, contrary to (iii). This means that, in 

the range 1-<_ r <p_-<2, Theorem 5.1 cannot be improved so as to yield 

restricted square invertibility. 

(3) Corollary 3.4 is false for 2 ~ p  < r since if R , A p , , R ,  were a "well" 

bounded operator  on 17, for some subset ~/ of {1,2 . . . . .  n} of cardinality 

proportional to n, then, by Corollary 3.2, it would also be "well" invertible in 17 

when further restricted to a subset ~r of r/ of " large" cardinality. This again 

contradicts (iii). 

In order to describe our construction, fix n and let E.  (to) be a n x n matrix 

whose entries (e,.j (to))7,j ~ are symmetric independent random variables on some 

probability space (~,2£,/z), each of which taking only the values + 1 and - 1 .  

Let (gi.i(to'))~.~=z be a matrix of symmetric independent Gaussian random 

variables over an independent copy (~ ' ,E ' ,  p,') of (~ ,E , /z ) .  Fix now p ~ 2 and 

note that the norm II E,  (to)ll, of E.  (to), when considered as an operator  on l~,, 

satisfies 

liE° (to)ll.d (to) 

= E,,(to) 
i , j = l  

~ V~r/2 

= ~/rr/2 

L - -  , , < ( t o ) ]  ( t o ' ) l e ,  ® e, 

- -  ~ g,,j (to') e, @ ej dp,'(to'). 
' i , j = I  p 
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Hence ,  by Chevet ' s  inequali ty [7] (see also [12]), we get that 

.~ lIE. (to)ll~dtt(to)_ <_ 7rn ''~'. 

Define 

and observe that 

Ap.. (to) = I + n-'/P'E. (to); to ~ ~ ,  

~ llAp..(to)ll,d~(to)~5. 
l 

(Note that the same argument  involving the use of Chevet ' s  inequali ty actually 

yields that 

f,, IlJp..(to)ll, dt~(to)<=5, 

for  any p '  = q _<- p.) 

In o rder  to prove condit ion (iii), we need the following lemma.  

LEMMA 5.5. There exists a constant D < oo such that, for any n and any matrix 
(e,.j(to))~"4=, of symmetric independent random variables on a probability space 
( l ) ,X,/ . t )  which take only the values + 1 and -1 ,  we have 

J . = ~  max{2maxl j~e , .~( to)e , .k(w)]  crC{l"~ }} • . . . . . .  n d t ~ ( t o )  
l i = l  I < - k ~ n  

k # i  

_<_ Dn3/:(log ny/2. 

PROOF. Let  o% be the family of all the maps q~ which take the set {1,2 . . . . .  n} 

into itself in such a manner  that ¢ ( i ) ~  i, for  all 1 _-< i <= n. Let  ~ be the family of 

all the triplets of the form u=(o',¢,{O~}Ld, which range over  all o-C 

{1.2 . . . . .  n}. ¢p E .~T and 0, = +- 1 ; 1 _-< i <_-- n. and observe  that ] ~  I <= 2" • n" • 2 ~ = 

(4n)% Put m = [log l ~ I] + 1 and note  that  

1 i = l  j E ( r  

-<l°l/! ' ' '  max 2 0 ,  ei.,(to)e,,.,,,(w) dP'(to)) ',m 
1 i=-I ]E,y 

= < e m a x  L ( u )  
u E '71l 
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where,  for  any fixed u = (~, q~. {0~}7=~) ~ al/, 

I 
1 i=1  i E f t  

Fix now u = (or, p, {0~}7=1)E a// and verify that, for this part icular  choice of q~, 

there  exists a part icular  {~k}~=l of {1,2 . . . . .  n} into l mutually disjoint subsets so 

that l =< d log n, for  some constant  d < ~c independen t  of n or p, and 

(i) ]~kl<=n/2 k, 
(ii) ¢P(nk)N r/k =Q~, 

for all 1 _<- k _<- I. Thus  

In general ,  for  a fixed j E o', e'/,h (tO) and ej..,~(to) need not be independent  since 

q~(i) might coincide with h. However ,  for  each fixed 1 <_- k -<_ l, we conclude,  by 

(ii), that  the families (e'/,k(co))'/e,~.i~n~ and (ej..cn(to))'/~,~,~ are independent .  

There fore ,  by Khintchine 's  inequali ty in L,. ( f L ~ , / x ) ,  we have that 

I 

L ( u )  <--B,. • Z ( I ~ I I ' ~ I ) " 2 < - - B , . n / ( V 2 - 1 )  • 
k = l  

This completes  the proof ,  in view of the fact that Khintchine 's  constant  13., is, 

as well known,  <_- ~/m. [ ]  

We return now to Example  5.4. By L e m m a  5.5 and the est imate in mean for 

the norm of Ap,.(¢o), there  exists a point  to. E l l  such that 

and 

II &,,, (¢o,,)lLp ~ 10 

2 max [ ~ ei.~ (w. )ej, k (~on ) l <= 2Dn312(log n )'/:, 
i = l  l N k ~ n  j eer  

for any choice of ~r C {1,2 . . . . .  n}. 

Now, for  each n, fix ~. C {1,2 . . . . .  n} so that 

K = s u p  
n 

and choose an integer  1 _-< i. <= n which ensures that 

I ~'~ ej,,. (to. )ej.k (w. ) t <= 2Dn'/2 " (log n )'/2, 
jEcrn 
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for  all 1 <= k -< n, k ¢ i.. Le t  r > p and consider  the vectors  

I1 lip' 

x. = e , .  I , ~ . 1 - 1  ,e~. ~" eu° (w" )e ' ;  n = 1 , 2 , .  . . . .  
j~ i .  

whose  norm satisfies 

1 ~ Iix. II, ~ 1 + n"~'/( I  o'. I - 1)'"'--> 1, 

as n--> oc. On the o ther  hand,  we have  that  

IIAp, n (oJ.)x. N, <-I e*.ap.. (~o.)x. I+  n 

and it is easily verified that  

1/r • max le*~A..(o~.)x, j 
k~in 

e *Ap.,. (w.)x .  = e ,°.,.(w. )In '/p' 

and,  for 1-<_k-<_n, k ~ i . ,  

l e * A , . . ( w . ) x .  I <-- n'/P'/(l~r. I - 1) + n - " ~ ' l e *E . (o~ . ) x .  I 

<--. ' " / ( I  o-° I -  1)+ n-"P'+ I j~ .  e,,,. (m.)e,,k (w , , ) I / ( I  oo T- l )  
j~ i .  

<= n"P'/(l o'. I -  1)+ n-"P' + (2Dn"~(log n) ''2 + 1)1( I o',, I- 1). 

Thus,  for n sufficiently large, we obta in  that  

II Ap,,, (w,,)x n II r ~ n l/r+l/P'/( I O'nl--1)+ (3On'"+'/2(Iog n)'/2)/(l o',, I - 1) 

<= K(21n '/p-'" + 6D(log n)mln ''''-''2) 

• --> 0, 

as n ---> oo. This comple tes  the a rgument .  [ ]  

EXAMPLE 5.6. For  each p > 2 ,  there  exists a sequence  {Gp..}]=, of l inear 

ope ra to r s  on l~ so that  

(i) sup.  n Gp.. lip < % 
(ii) the entr ies  of the matr ix  associa ted to Gp.. tend to 0, as n---> % 

(iii) for  any 1 _-< r < 2 and any subset  ~r. of {1,2 . . . . .  n} with sup .  n/I or. ] < % 
we have  

lira II R . .  Gp,.R ~.II, = ~.  
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We can draw the following conclusions from the existence of the above 

sequence { (3,., }~, =,: 
(1) The operators Bp.. = I + (3,., ; n = 1,2 . . . .  have diagonal tending to 1, as 

n - - -~ ,  and sup, IIBp., lip < ~ .  However,  the operator  R,~B~.,R~. is not well 

invertible, for any choice of 1 =< r < 2 and ~r, of cardinality proportional to n, i.e., 

Theorem 5.1 cannot be improved so as to yield restricted square invertibility for 

1 _-< r < 2 (where we have only restricted rectangular invertibility, by Theorem 

5.1). Indeed, if 

sup 'II, < 
n 

for some 1 _<- r < 2 and {~,}~=~ satisfying supn nil ~. 1 < ~, then, by Corollary 3.2 
B --1, = . . ~  applied to the operators (R ~. , . .R ~.) • n 1,2,. one could find subsets 1-. of 

or. with sup. t/l . so that 

sup II R ..B,.,,R..II, < oo. 
n 

contrary to (iii). 
(2) Corollary 3.4 is false, for p > 2 and 1 < r < 2, and also for 1 =< p < 2 and 

r > 2 .  

We pass now to the construction. Fix an integer n and p > 2, take k = [n ~-2/p] 

and suppose, for the sake of simplicity, that k divides n. Put m = n /k  and let 

{rt~ }7'=t be a partition of {1,2 . . . . .  n } into mutually disjoint subsets, each of which 

has cardinality equal to k. Let (e,.j (w))?=l.]-~ be a matrix of symmetric indepenent 

random variables on a probability space (fl, ~, /x) ,  each of which takes only the 

values + 1 and - 1, and define 

Gp..(to)=n-'Z"~__1~=le,.,(oJ)((h~n, eh)~ej ) • 

Then, by passing to independent Gaussian random variables, as in Example 5.4, 

and, by using Chevet 's inequality, we get that 

fn ll G...(oJ)llpd~(w) <- _ V~rl2 k'/P'n ~/P'(m~'2-~/Pn~'P + m'/P'). 

which, in view of the condition imposed on k, implies that 

f llG,..(o~)[I,dt~(o~)~3. 



204 J. B O U R G A I N  AND L. q-ZAFRIRI Isr. J. Math. 

Fix K < ~  and choose a point to, Ef~ that satisfies IlGp,,(to,)l[p _-<3, and let 

~r, C {1,2 . . . . .  n} be so that 

sup n/lo' .[<=K. 
n 

Then one can find an integer 1 -<_ i, -<_ m with the property that 

Io,  NTI, .I>=k/K. 

Fix now 1 <= r < 2 and define the vector 

h E  r t i  n 

and note that llx,,, 11, = 1, for all n. On the other hand, 

I[R. .Gp,.( to.)x~, . l l ,=n '/P'lo-, n r/,. '/".1[ ~ e,..,(to,)ei[I 
} . r 

= n  ""'1~° n ~,° ' " "  I~° I"' 

n a 2 / , ' l l p / K - - . . ) o o  ' 

as n ~ ~. This proves (iii). [] 

So far, we have studied in this section only the restricted invertibility of 

matrices with l 's  on the diagonal. Since there are also interesting applications in 

which the corresponding matrices do not satisfy this assumption we present now 

a variant of Theorem 5.1 that applies in a more general setting. 

THEOREM 5.7. For every p >-1 .and M <  oo, there exists a constant b = 

b(p, M )  > 0 such that, whenever Z is a linear operator on l~ for which II Zllp --< M 

and 

fll    ell 
then, [or every l < r = 2, there exists a subset T of {1, 2, . , n } such that l1" l >-_ bn 

and 

II ( t'" a, Te, >=b Z l a ,  l" , 

for all {ai},~,. 

PROOF. Note first that, by Proposition 3.13, the case 1 _<-p < 2  reduces 
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immediately to that of matrices with l 's  on the diagonal, which is already 

covered by Theorem 5.1. Suppose, therefore, that p > 2 ,  let Bp denote 

Khintchine's constant in Lp and put 

= B eM Tei ; 1 <= i <- n. 

Let s = (E;'=I ]x, 12) 1/2 be the square functions of the vectors {x~}? i and assume 

that s = Y? 1 s~e~. Then, for each 1 = i =< n, 

s, = le*(xi)[ 2 

= s u p { ~ ' . c i e * ( x j ) ; ~ ] c ,  12<-_l} 
j=l i=1 

=< X/2 B iM p. 

Thus, by our hypothesis, 

fll  II V-2 B ~ M  p ln~/" <-_ e~x, de 
= p 

--< B~lls[l~ 

= Bp s, I p 

<=B.(V-2 B g M ~ Y  - ' '"  " Is, 
. =  

from which one easily deduces that 

I2 II ~,x, d~ _-> II s II1/V2--> n, 
" =  1 

i.e., condition (i) of Theorem 5.2 holds for the vectors {x~}~-i in l?. As in the proof 

of Theorem 5.1, we check immediately that also condition (ii) holds with M 

replaced by X/2 BPpM p and p = 1/p. Thus, by using Theorem 5.2, we complete 

the proof in the case r = 1. Then, by Proposition 5.3, we complete also the case 

l < r < 2 .  []  

We conclude this section with an application of Theorem 5.7 to the A2-sets 

problem, whether there exists a constant K < ~ such that, for every integer n, 

e > 0 and every set of n characters, there is a subset of cardinality > n'-E onto 
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whose linear span the L~- and L2-norms are K-equivalent (recall that W. Rudin 

[25] gave a positive answer for e = ½). We present here a partial result, a variant 

of which was observed before by V. D. Milman and G. Pisier. 

Fix n and let {w~}~"=~ be the sequence of the Walsh elements in /~", i.e. 

2 n 2 n - I  2 n 

w , = ~ e , ,  w , = ~ , e , -  ~ e, . . . . .  etc. 
i - - I  i = 1  i = 2 n - l + l  

The operator  T on l~, defined by 

m 

Te~ w~f~/2"; 1 <=i = 2 ,  

is clearly an isometry and, moreover,  

f  ,we, n - I  
= ~ / 2  , 

i.e., ~/2 T satisfies both conditions of Theorem 5.7. It follows that there exist a 

constant b > 0  and a subset ~, of {1,2 . . . .  , n} so that ]~r,l>= b ' 2 "  and 

This statement can be interpreted better in the setting of function spaces. Let 

{W~}7=~ denote the sequence of the usual Walsh functions on [0, 1]. Then the 

inequality above implies that, for any n, c > 0 and r /C ~r, with ] 77 ] - c • 2", we 

have 

W, W, >-_blnl/V2">=b.cV2"=b.c W, , 
1 2 

i.e., on "large" sums of elements from {W~}~., the L~- and Lz-norms are 

(bc)-~-equivalent. Since sets of 2" characters cannot contain A2-sets of cardinal- 

ity proportional to 2", one cannot expect to prove that the L~- and L2-norms are 

equivalent on {W~},~,.. 

More generally, it can be derived from Theorem 5.7 that, given a finite set A of 

characters on a compact abelian group G, there exists a subset Ao of A such that 

I~1 --> c I A I, ~or some universal constant c > 0, and 

3" a3`')l L l lG)  3`EAo 

for any choice of {a~}3`~. 
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6. Operators on spaces with an unconditional basis 

In Section 3 we proved an invertibility theorem for operators acting on 

I~,-spaces whose corresponding matrix has l 's on the diagonal. In this section we 

present an extension of this result to the case of operators on spaces with an 

unconditional basis. The method used here is completely different and, in some 

sense, simpler than that used in Section 3. However,  the rank of the "well" 

invertible submatrix that we obtain by the present method is not necessarily 

proportional to the rank n of the original matrix but only of order  of magnitude 

n ~ ~, with e as small as we like. We have not checked whether one can find well 

invertible submatrices of rank proportional to n. There is another minor 

restriction, namely, that the underlying spaces have non-trivial cotype or, 

weaker, than the unconditional basis under consideration satisfy a non-trivial 

lower estimate. 

Before stating the main result, we recall that the unconditional constant of a 

basis {e,}',' ~ is the smallest constant K so that 

for any choice of scalars {a~}'L~ and signs {e~}~ 1. Such a basis is also called 

K-unconditional. 

THEOREM 6.1. Por every K >- l, M >= l, l < r < ~c, c, > O and l > e > O, there 

exists a constant C = C(K,  M, r, ¢ ,  e )  < ~ such that, whenever  n >= C, X is a 

Banach  space with a normalized K-uncondi t ional  basis {e~}'~' ~ which satisfies a 

lower r-est imate with constant cr, i.e. 

aiei >= c~ I a` I' , 
i = l  

for all {a, }~' ,, and T: X- -~  X is a linear operator of  norm I[ T ][ <: M whose matrix 

relative to {e~}," ~ has l ' s  on the diagonal, then there exists a subset cr of  

{1,2 . . . . .  n} of  cardinality I ~ l > n  '~  for which R¢TR~ restricted to R . X  is 

invertible and its inverse satisfies 

I[(R,,TR~)-' 1[ <~ D. 

(R,. denotes, as before, the restriction operator  defined by R~(E,~=la~e~) = 

E~,a~e~, for all {aJT=,.) 

The proof of Theorem 6.1 requires a preliminary lemma which is essentially 

known. 
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LEMMA 6.2. Fix m and let p ( x ) =  ET'=,, b,x' be a polynomial of degree m which 

satisfies Ip(x)l<= 1, for O<=x <= 1. Then 

max I b i l ~ ( m + 3 )  3~. 
( I~-- i <: t-?1 

PROOF. We shall p roceed  by induction.  For  m = 1, the assertion is trivial. 

Suppose now that it is t rue for some m and consider a polynomial  p ( x ) =  
~ m + l  -~ =,) b~x ~ of degree  m + 1 which satisfies I P (x)] _-< 1, for  0 ~ x = 1. By integration,  

we get that 

'"+' )] 
~, b , x ' / ( i+ l  <=1, 
i = 0  

for all 1 =< x -<_ 1, f rom which it easily follows that 

12~=,) b~x'( (m+2)/( i+ 1 ) - l ) f = < m + 3 ,  

again, for all 0 =< x --- 1. Hence ,  by the induction hypothesis,  

r b~ ]/(m + 1)(m +3)=< [b~t((m +2) / ( i  + 1 ) -  1)/(m +3)<= (m + 3 )  3", 

i.e. 

]b,]<=(m+3)3"+2; O<=i<=m, 

and also 

rn  

I b.,+, I = 1 + Y. lb, h-  -< 1 +(m + 1)(m + 3)3"+2 < (m +4) 3'm+'>. 
i = 0  

[ ]  

PROOF OF THEOREM 6.1. Fix the constants  K, M, r, c, and e, and let {e~}p=t and 

T satisfy the condit ions of the s ta tement .  Note  that there is no loss of general i ty 

in assuming that K = 1, i.e., that  {e~}'~' ~ is l -uncondi t ional .  

Let  (a~,i);'.j-, be the matrix of T relative to the basis {e,}'L~, i.e. 

Te~ = ~ a~.jej ; 1 <= i <= n. 
j = l  

By our  hypothesis ,  a~.~ = 1, for all 1 -<_ i <= n. Put S = T - I and let (b,.~)74=, be the 

matrix associated to S, i.e., b~.~ = 0 and b,.j = a~.j, for all 1 _-< i, j _-< n, i # j. 

The  assumption that {e,}7 , satisfies a non-trivial lower est imate is needed  in 

o rder  to select a submatr ix of (b~.j)~4 ~ of rank proposi t ional  to n which has 

"smal l"  entries. More  precisely, since 
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i .e. 

M' ~ II Te, I1' =¢ ;  ~ I a,., I', 
j = l  

(MIc,) '~la,., l ' ,  
j = l  

for  all 1 =< i <= n, it follows f rom [13] or [4] that,  with z = e2/16, there  exists a 

subset "0 of {1,2 . . . . .  n} of cardinali ty 

so that 

[r 1 t>_ n'-~¢ l16 

I b,., I' = ~ I a,., I' <-(MIc,)'ln', 
J~n j E n  

jz:i 

for  every  i ~ ~. In particular,  we conclude that 

t b,, I_- < MIc,. n", 

for  all i, j E r/. 

Take  6 = 1/n v" and let {~},~, be a sequence of independen t  r andom variables 

of mean  6 over  a probabil i ty space (fi, E , /x )  taking only the values 0 and 1. For  

oJ E fi,  put 

n ("-') = {i ~ n ;  ~, (~ )  = 1}, 

S(to ) = R,~onSR,~n, 

( I )  n and, for  l being a fixed integer  so that l > 3 r / 2 r  2, let (b~.j (oJ))~,j=~ be the matrix 

associated to the / -power  S(¢o) ~ of S(to). 

We int roduce now the following notat ion.  For  fixed integers i , j  E r/, put 

F,.s -- {(i, i,, i2 . . . . .  i,_,, j); ih E 17, 1 <= h < I} 

and, for 3' = (i, i,, i2 . . . . .  it-~, j )  E F,.,, deno te  

s ~ = b , , , , ' b , , , , ~ " ' b , , , j  and ~ o ~ = ~ ' ~ , , ' ~ , , ' ~ , , _ , ' ~  s. 

Then  

b~lj'(oJ) = ~ s~cp~(oJ), 
"/El ' i , /  

for  all to @ f~, and thus, by integration,  
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(M+ 1) 21 ~ f.  [[s(oo' 112d~(~o) 

->-f I "' 2 
l 

= f~ ~" GG'q~(oJ)q~'(w)dtx(~o) 
1 %'y'fil-i# 

21+2 

=Zb.  
h=l 

J'/~ 12/+2 for a suitable sequence t~,,J,=~ of reals. Since 

2l+2 
ON ~, b~x " = < ( M + I )  21, 

h=l 

for all 0 _-< x _<- 1 (and not only for the particular choice of x = 6 made above), we 

get, by using Lemma 6.2, that 

max [b, [_-<(M+ 1) 21. ( 2 / + 5 )  6"+',. 
l~hN21+2 

On the other hand, observe that, for each 1 -<_ h _--- 2l + 2, bh is the sum of all the 

products s~ - s~, for which the union 3' U 3" contains exactly h distinct integers. 

This sum has at most (2/) 2~ • n h summands of the form s~ • s~, each of which is 

bounded by (M/c,  • n " )  21. Thus 

Ibhl<--(2l .M/c,)2 ' .nh-2" ';  1__<h__<2/+2. 

We are now able to evaluate the expression E~t_-+~ bh~ h. We choose an integer m 

so that 

1/T < m < 2/r  

and use the first estimate for bh with h > m and the second for bh with 

1 =< h =< m. It follows that 

2•+2 ~ 21+2 
Z b~Sh<-- lb.! ~h+ Z lb.I ah 
h = l  h ~ I  h=ra+I 

=<m.  max I b h 1 + 6 " + ' . ( 2 / + 2 )  max Ibh[ 
l~h~m en<h~21+2 

<= m(21.  M/c, )  2' . n "-21"/" + 3 m÷l. (M + 1) 21. ( 2 / +  5 )  6/+7. 

In view of our concrete choice of l, m and 6, we obtain the existence of a 
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constant C,, independent o f  n, so that 

I bl!}(,o)12dtz(oJ)= b.,5" <= Ct(l/rl  l/~ + l /nl/~")<=2Ct/nt/v~, 
l h=l 

for all i, j E 7- Hence 

< n 2- max,.,e, fn I bl!~(~°)ldlz(°J) 

(I )2 _-< n 2. max I b~2(.,)12d.(~o) 
i , j ~ n  l 

( 2 C 1 ) t / 2 .  n2-1/2~ 1.. 

Since r < 1/16 it follows easily that there exists a constant C2, independent of n, 

so that, for n _-> Cz, we have 

~ IIS(,o)'lld~ <'  

Hence, one can find a point ~Oo in the set 

such that 

Put 

I] I ~ I s (,,,o)I1=~ 

C = 21. max{ tl S(~oo)ll, II S (~oo) 2 II,-.-, !I S (~Oo)'-t t1,162'" } 

and note that the inverse of Re(~o)TR~o) restricted to R¢(~o)X satisfies 

- 1  II(R,,,,~,,TR,.,.,,) II= ~ IIS('oo)kll 
k ~ O  

u ~ 0  

u = 0  

-<C.  

I - I  

tls(~ooP÷" II 
h = 0  

| - 1  

E IIs(~oY II ~ • IIS(~o)~ II 
h=O 
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Furthermore, since oJo E D, it follows that 

I r/(~oo)l = ~ ~ (too) >_-- ~1"0 t/2 ->- n~-2"-v~/32 > nt-3v;/16- 

Hence, in view of the fact that r = e2/16, we conclude that, for n sufficiently 

large, we have 

1.7(.,,,)1 > n 

This, of course, completes the proof. [] 

Theorem 6.1 can be used in order to prove the following result which, in some 

sense, improves Theorem 1.1 from [6]. 

COROLLARY 6.3. For every K >= 1, M >-_ 1, 1 < r < % c, > 0 and e > O, there 

exists a constant D = D(K,  M, r, cr, e) < ~ such that, whenever X = X,  0 X2 is a 

Banach space with a normalized K-unconditional basis {e~}7-1 which satisfies a 

lower r-estimate with constant c, and the projections P, and P2 onto X, ,  respectively 

X2, associated with the above direct sum, have norms <= M, then there exists a 

subset cr of {1,2 . . . . .  n} of cardinality I, 1> n '-~ with the property that at least for 

one of the factors, say X, ,  the following holds: 

(i) {P,e,},~ is D-equivalent to {e,},~, 
(ii) there exists a linear projection 0 of norm II Q I1--< D from X onto [P,e , ] ,~ .  

PROOF. Let {e*}7=, be, as usual, the biorthogonal functionals associated to 

{el}7=, and notice that, at least for one of the factors, say X,, one can find a subset 

r/ of {1,2 . . . . .  n} of cardinality [7/1 -> n/2 so that 

e*Ple~ >= 1/2; i E r/. 

Consider now the linear operator T: [e~]i~ ~ X,, which is defined by 

Te~ = P~e~/e*P~e~ ; i E 71. 

This operator clearly has norm=<2KM. Therefore, R , T  is an operator of 

norm =< 2K2M on [e~]~e, and its matrix relative to {e~},c, has 1% on the diagonal. 

Hence, by Theorem 6.1, there exist a C < oo and a subset ~r of r/ of cardinality 

I cr I> (n/2) '-~ such that II(R, TR~) -j I[ <= C. This already implies that {P~e~}~e~ is 

2CK2M-equivalent to {e~}i~. Furthermore, it is is easily verified that 

o = T .  (R TR ) 

is a projection of norm <-_ 2 C K : M  from X onto its subspace [Pte , ] ,~ .  []  
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7. Non-operator type results 

So far, we proved invertibility results for "large" submatrices of matrices 

which map the unit vectors {e~},"~ into vectors {x,}~'_l of norm one or about one. 

The boundedness of the matrix is equivalent to the existence of a corresponding 

upper estimate for the vectors {x~ }~=~ while the assertion of restricted invertibility 

can be interpreted as the existence of a lower estimate which holds for a subset 

{x~}~e~ of cardinality [or[ proportional to n. 

The purpose of this section is to present a quite general situation in which 

lower estimates hold without assuming the existence of suitable upper estimates. 

In some sense, the main result is an extension of Proposition 4.4 to the present 

setting, i.e., without assuming condition (i) there. 

THEOREM 7.1. Forevery l < p = < 2 ,  K < ~  a n d c > O ,  there exists a constant 

d = d(p, K, c) > 0 such that, whenever {g~}7 J and {h~}7-~ are normalized sequen- 

ces in Lp, respectively Lp,, for which 

(1) IIET=, b,h, lip <: g(~7=, t b, Ip)'Q for any choice of {b,}7~,, 
and 

(2) l(g,, h,)l >= c, for all 1 <= i <_ n, 

then there exists a subset cr of {1,2 . . . . .  n} so that I trt>= dn and 

for all {a,}i~,,. 

The first step in the proof is to pass from the function space framework to a 

sequence space one. A connection between these two settings is given by the 

following very simple lemma. 

LEMMA 7.2. Fix 1 <= p <-_ oz and let {gl}7-1 and {h~}~'=~ be normalized sequences 

of functions in Lp, respectively Lp., which satisfy the conditions (1) and (2) of 

Theorem 7.1. 

Let {ej}~' z denote the unit vectors in l"p and, for 1 <= i <-_ n, put 

x, = ~ (g,, h,) (g'' h,) i~, I(g,, h,)l e,. 

Then, for any choice of {a,}7:1, we have 
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PROOF. By linearization we get, for any choice of {a,}7=~, that 

" (~,, h,) P) 
Ii,=~a,x,U =(j~=tl~__lai(g,,h,),(g,,h,)l [ I/. 

=sup ~ b i z ,  a'~g"n~ Ig, h,~t ' 
i=1 i=l xO'~ " i t  j= l  

{ l ( ~  (g,, h,) ~ ) l  ~ 
=sup a,l(g,,h,)lg,, b, hj ; 

• =1 j = t  j = l  

~ K  2 a ,  l(g,,h,)l g, 
i = t  p" 

We need also the following lemma. 

bjlP'_-< 1} 

[] 

PROOF. We use again an exhaustion argument. Suppose that the assertion is 
false. Then one can construct subsets ~'1Dr23"'D~-~ of {1,2 . . . . .  k} with 
I zt[>= k/2 and vectors {y,}l=l such that 

IlY, ll,<c/4 and l < i < - l .  
jEl" i  jC~'i 

For those j ~  ~'i ; l _-< i < I, we put bl.j = O. The procedure is stopped after, say, m 
steps when the set 

~"+1 = { j ~ ~'" ; ~ I b'j Ip < 1 } i = 1  

has cardinality < k/2. An easy computation shows that 

for any choice of {ai},E,. 

LEMMA 7.3. For every l < r < p < = 2 ,  there is an a = a ( p , r ) > O  such that, 
whenever {x,}~=l is a sequence of vectors in l~, for which 

a,x, >=cEla, la, I 
i=l  I i=I 

for some c >0, k and all {a,}~=,, then there exists a subset "r of {1,2,. . . ,k} of 
cardinality f rl >- k /2 so that 

I I~a 'x ' l lp>C'(~ 'a ' lP)  
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k <=2m. 

Let now {~b~}~ be a sequence of independent p-stable random variables over 

a probability space (l~, E, ~)  which have norm one in L~(fI, E, ~).  Then, by our 

assumption (with a to be determined later), 

cm ~:p • k I:P'I4 

=> 

>=c" ~b,(to)b,.j d l ~ ( W ) - o ~ ' c ' k  >'" q,~ (to)b,.j dl~(to) 
/ = I  l i = l  ]~ i = 1  

= c .  I b , , t  P -~c.k"llq,,ll, I b,.j I P • 
j = l  ' =  

However, as readily verified, we have 

~lb, , , l~<=2,  
i = l  

for all 1 =< j <= k. Thus 

m ':p. k'/P'14> ~ ~ I b,., 1 " / 2 ' " - 2  '/' .o~. k II q',ll, 
j = l  i = l  

>= m / 2 ' : ° ' -  22/p " a • k '/"'. rn ~'p • H ~O,t],, 

i.e. 

1 > 2"~/P'--2 2+2/p " c t "  II ~,] lr ,  

which is contradictory if t~ if chosen small enough. [ ]  

PROOF OF THEOREM 7.t. Fix l<p_--<2, K < w  and c > 0 ,  and consider 

sequences {g~}~'=, and {h~}','=~ which satisfy the conditions (1) and (2). Choose 

1 < r < p and let a = c~(p, r) be given by Lemma 7.3. 
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By (1), the matrix {(g,, h \t,, ;/-4=, has the p roper ty  that  

= sup / 
/=t i=z 

for all 1 <= i -<_ n. Thus,  by [13], one can find a d~ = dl(p, r, K, c)  > 0 and a subset  

tr~ of {1,2 . . . . .  n} such that  ]cr~l_-> d~n and 

I ( g i ,  h i ) l  p "< 0~ " C / 1 2 B r , ,  

where  B,. deno tes  the constant  in Khin tch ine ' s  inequali ty in L,,. 

Let  {e~}; .... and {e~}; .... s tand for the unit vectors  in l~; "'l, respect ively  17 '~, put  

\ ( g,, h,) 
J~,,, r (g , ,h , ) le j ;  i E ~ ,  

and,  for each tuple of signs e = (ei)j~,r, ~ { - 1, + 1} ~"'l, consider  the vector  

u(e)= ~'~ e;e*. 
iff~ri 

Then,  for each i E cry, we have 

(x,, u(e))  = ~ t',(g,, h;) (g;' h,) ; .... ](g,, h,)l = e, ](g,, h,)] + v,(e) ,  

where  

v , (e)  = ~ ei(g,, h;) (~' '  h;) 
;~ , , ,  [ ( g , , h , ) l  " 
t / i  

By Khintchine ' s  inequali ty in L,,, we get that  

( \ .,72\ I/~-' 

B,... I(g,, h; )l" 

< a " C" I cr, ll/r/12. 
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Consider  now the set 

{ )'" I - i < o~ c "  [r r, 1'"74 g =  (e,), .... ~{  1,+l}r~"; q v , ( e ) (  • 
I 

and observe that 

I g I>- > _ 3.2r""/4. 

There fore ,  by using [27] or [29], we conclude the existence of a subset o'2 of o-, of 

cardinali ty k = ] o - 2 I > ] m ] / 2  so that, for  each tuple (e,),~,._, there  exists an 

extension (e~)~,., E g. 
Fix scalars {a,}, . . . .  write a, = b. + iq with b. and c i reals, for all j E o-2, and 

choose signs (0})/~,,~ and (0';),~,~ so that gO', = ]b ] and qO; = l q 1; J E o-e. By the 

above choice of 0"2, one can find in g extensions e '  = (e'j)j .... and e " =  (e';)j~o., of 

(0~), . . . .  respectively (O~)i<,~. It follows that 

211, :o,x, ll, 

jEa'2 

>= ~,~2(bj+iq)(e',-ie'i)[(gi, h j )] l -  ~ ai(v~(e')-ivj(e")] 
j j ~ : o ' :  

t =>c. Y. la, [ -  [a,l' Y. I~,(~')V' + I~,(~")1" 
' 2 j E s T 2  t ~  Y j ~ a 2  j 2 

>=c. 2 la, l-,:,, cP,,,l'"'" ~,1 r / /2  
j E ,~2 j ~ I 

>=c Y. la, l - o , . c . k ' " ' .  I~,l' , 
i E ~ 2  i 2 

i.e., the condit ions of L e m m a  7.3 are satisfied. Consequent ly ,  there  is a subset r 

Of  O" 2 o f  cardinali ty 

I r I>= k12>= d,n/4 
so that 

a i x i  p = 4 • ~ 

for all {a~}~E~. The  proof  can be now comple ted  by using L e m m a  7.2. [] 
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The following immediate consequence of Theorem 7.1 describes the most 

common situation when this result is used in applications. 

COROLLARY 7.4. Forevery l < p < = 2 a n d c > O ,  t h e r e e x i s t s a d = d ( p , c ) > O  
so that, whenever {~}7=~ is a normalized sequence in Lp [or which one can .find 
mutually disjoint sets {A,}~=I with the property that 

fA l[,lPdl~ >=c, 

for all 1 <= i <-_ n, then there exists a subset cr o]: {1,2 . . . . .  n } such that I tr [ >-- dn and 

I1,  o, 11 , 
for any choice o[ scalars {a,},~,,. 

PROOF. Take g, = ~ ,  /~, = l ~  IP-~(sgnf,)XA, and h, = ~,/11~,11~,; l<=i<=n, and 
apply Theorem 7.1. [] 

8. R e m a r k s  on some est imates  

In Sections 1 and 3, it was proved that, for every 1 < p < ~, there is a function 

8p (e) such that, whenever S is an operator on l; of norm I[ S lip --< 1 whose matrix 

relative to the unit vector basis of l;  has O's on the diagonal, then, for some 

subset ~r of {1,2 . . . . .  n} of cardinality I~1 => ~(~)n, the inequality 

H R,,SR~ lip < e 

holds. As usual, R~ denotes the restriction operator. Clearly, from the definition 

of 8p(e) it follows that 

and, therefore, also that 

~(~-~')-> ~(~)-~(~ ' )  

~ ( e ) >  ~ k , 

for some k = k(p) and all 0 < e < ½. This implies that all the estimates obtained 

in Section 4 related to finite-dimensional Lp-problems are of a polynomial 

nature. 

Notice that the method used in Section 3 to obtain 6p(e) does not yield 

directly a function satisfying the above condition. We shall show in what follows 

how to proceed more effectively. We present in detail only the case p = 2. The 

case of a general p, which is similar, is left to the reader. 
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Since the considerations below involve different norms for a linear operator 

W: R" --~R ~, we shall denote by II wJtp~q its norm when W is considered as an 

operator from l~' into I~. Instead of II WIIp~p we shall continue to use the 
notation [] WII P. 

We also recall that the matrix (b~.s)'f~,~ ~, corresponding to the operator W, is 
defined by 

We, = ~ b~4e ~ ; 1 <= i <-_ m. 
j=l 

PROPOSITION 8.1. There exists a constant C <oo such that, whenever 

0 < 8 < 1, n is an integer, {~}~=t is a sequence of independent random variables of 

mean 8 over some probability space (i), E,/~) taking only the values 0 and 1, 

m = [Sn] and T: 17----~ 1~ is a linear operator of norm Jl Ttl2 <-- 1 whose matrix 

relhtive to the unit vector bases is denoted by (a,.j)?=~.,=, then 

fn II ~ ~-~ ~i(t°)a"i@e'lJ2-tdP'(t°'<=C~l/8mt/2 
i=1 i=1 

The proof of Proposition 8.1 requires the following lemma. 

LEMMA 8.2. For every linear operator T: l'~---~ l~ and every e > 0, there exists a 

subset rl of {1,2 . . . . .  n} so that 

(i) Inl<=K~(ilZ]12_,/~) 2 
and 

(ii) IIR.,TII= < 

PROOF. As we have already seen before, it follows from Grothendieck's 
inequality and Pietsch's factorization theorem that there exist non-negative reals 
{Aj},=, such that 

and  

(2) ~/=1 (~m=l aijbl)2/,~ <_~ ~7~=1 ]bl [2, 

for any choice of {b~}?_~. Then, in order to complete the proof, it sutfices to take 

"O ={l_-<j <= n; Aj->_ e}. []  

PROOFOF PROPOSITION 8.1. Fix 0 <  8 < 1 and an integer n, take m = [Sn] and 

let T: 17---~ l~ be a linear operator of norm =< 1. Let {~;}~=1 be a sequence of 

independent random variables of mean 8 over a probability space (l-l,E,/x) 

which take only the values 0 and 1. Choose now two independent copies 

(IT,~' , tz ' )  and (IF, ~", /x") of (~ ,~ , /x )  and let {~}7=1 and {~:'~},~, be two 
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sequences of independent random variables of mean X/~ over (f~',Z',/x'), 

respectively (if ' ,  E",/~"), which again take only the values 0 and 1. 

Fix o ) ' E l l '  and apply Lemma 8.2 with e = ~i ~/s to the operator T~,: l'~--->17 
which is determined by the matrix (~'~(oJ')au)7= ~,7= t, where (a~.i)?= ~.7=t is the matrix 

corresponding to the original operator T. It follows that there exists a subset 

rl(o)') of {1 ,2 , . . . ,  n} such that 

(i) ] n(O)')[ <<- Ko~3-1/all z.,,l]~. 
and 

(ii) IIR~,~+To, II~< a ''~. 
For oJ'@ ~ '  and o)"@ ~", we shall set 

. t t " r ' (~ ' )  = {1 ~ j ~ n ,  ~i( to ) = 1}; 

and 

~-"(~o") = {1 _-< j < n; ~';(o9") = 1} 

~-(o~', ,o") = ~-'( . ,") n ¢'(,o"). 

Then we get that 

I = f, ,~=~ i~ ~(o))aue~ @eill2~ dtx(o)) 

=< f,,,, ~,,, (ll R.¢~,,n...,~,,,Z~,ll2-, +llR.¢~,;n.,.¢o,,,,Z~.ll2-,)d.'(o-,')dtz"(o)") 

(]n(~o')nr (~o)I IIZo, ll~ I~(,o'..,") IIR.,,~,,~L, II2)d~(.,)d~ ( . , )  
F 1" 

ZKo$"~f I1 T~, II=_, d~'(~o')  + a-',~ n ''= 
d l l '  

However, by the estimate for l ( r )  obtained in the proof of Proposition 1.10 

together with Proposition 1.8, we conclude the existence of a constant A < oo 

such that 
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I[T.,, 112~. d/x (w)  = 8 max cj~; , c = cje~ ~ 12, t cj t 2 < 1 
1' /=1 m /=1 j=l 

<= 8 A m  '/~ 

<_- 8A (6n) '/z. 

This, of course, completes the proof. 

The proof of Proposition 1.10 can now be modified by using Proposition 8.1 in 

order to evaluate there the expression I(~). The outcome of this modification is 

that the expression (log(i/6)) t/2, appearing in the statement of Proposition 1.10, 

is replaced by 81/~. Consequently, the function 62(e), which was defined in the 

introduction of this section, satisfies the following inequality: 

COROLLARY 8.3. There exists a constant c > 0 such that 

6 (  ) >  2 E  ~ C E  , 

for all O < e < l.  

REMARK. In a similar manner, one can show that, for each 1 =< p =< o% there 

are constants d and p > 0 so that 

6p(e)-- de";  0 < e < l .  

Proposition 1 can be also used to improve an estimate obtained by B. S. 

Kashin [15] for the upper triangular projection A + of a n x n matrix A. Before 

stating our result, let us introduce some additional notation. If 7r is a permuta- 

tion of the integers {1,2 . . . . .  n}, i.e., if ~r is an element of the symmetric group 

A--Sym(n) ,  endowed with the normalized invariant measure A, and A = 

(a~4)~=~ is a matrix acting as a linear operator on R", then we denote by A~ the 

operator corresponding to the matrix (a~.~0~)~i=~. 

THEOREM 8.4. For every 1 <= q < 2, there exists a constant G < o~ such that, 

whenever A is a linear operator on l~, then 

fA ll(A~)+ll:~,dA (~r) <= C,n ""-":.  IIA II~. 

PROOF. Fix 1 <= q < 2 and an integer n, and assume, for sake of simplicity, 

that n---2 ~. Next, by proceeding as in [15] and writing the upper-triangular 

projection of A as an element in the projective tensor algebra l " ~  lg, we get 

that 
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where 

, 2 h i 

A * =  ~'~ ~'~ R ...... A R  ...... 
j = l  k = !  

l",.k = {j; (k - 1)n2 -h _<-j < kn2-"} ,  

for all 1 ~ k = 2  h, 1 =< h ~ 1. Since, for each 1 =< h < 1, we clearly have 

k = l  2 

it follows, by interpolation with 0 satisfying 1 / q = O / l + ( l - O ) / 2  (i.e. 

0 = 2/q - 1), that 

II(n.)+ll2~. <= R ...... A ~ R  ..... 
h = l  k = l  2 ~ q  

<-_ R ....... A . R  ..... "ilA Ill o 

l |  k = 1 2 ~ 1  

2 h I 0 / 2  

for any choice of w E A. Hence, by averaging over w ~ A, we get that 

/ 2  ~-~ \ ai21 

2h I 

On the other hand, by Proposition 8.1 applied to z satisfying I TI = 2-hn and 

8 = 2  -a; l ~ h = < l ,  we have that 

S, I l R , n . R ,  II~ld, lOr) 

=Ll  
iE-r  jE~r- l ( ' r )  

i E r  jeer 2 ~ 1  

C2-h/s(2-hn )'/2H A 612. 

The proof can now be completed by using the above fact with z = Ch,2k-,; 

l < = h < = l , l < - k = 2  . • 
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Added in proof. K. Ball (private communication) has recently found a nice 
and simple argument to prove that the assertion of Theorem 1.2 directly implies 
that of Theorem 1.6. 
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