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ABSTRACT
The main problem investigated in this paper is that of restricted invertibitity of
linear operators acting on finite dimensional [,-spaces. Our initial motivation to
study such questions lies in their applications. The results obtained below
enable us to complete earlier work on the structure of complemented subspaces
of L,-spaces which have extremal euclidean distance.

Let A be areal n % n matrix considered as a lincar operatoron I, 1 = p ==,
By restricted invertibility of A, we mean the existence of a subset o of
{1,2,... n}such that lo |~ n and A acts as an isomorphism when restricted to
the linear span of the unit vectors {e},. .. There are various conditions under
which this property holds. For instance, if the norm | A |, of A is bounded by a
constant independent of n and the diagonal of A is the identity matrix, then
there exists an index set o, |}~ n, for which R,A ., , has a bounded inverse
(R. stands for the restriction map). This is achieved by simply constructing the
set o so that | R,(A = )R, ||, < 1.

The case p =2 is of particular interest. Although the problem is purely
Hilbertian, the proofs involve besides the space I also the space [, The
methods are probabilistic and combinatorial. Crucial use is made of Grothen-
dieck’s theorem.

The paper also contains a nice application to the behavior of the trigonomet-
ric system on sets of positive measure, generalizing results on harmonic density.
Given a subset B of the circle T of positive Lebesgue measure, there exists a
subset A of the integers Z of positive density dens A >0 such that

(o

whenever the support of the Fourier transform f of f lies in A. The matrices
involved here are Laurent matrices.

The problem of restricted invertibility is meaningful beyond the class of
l,-spaces, as is shown in a scparate section. However, most of the paper uses
specific [,-techniques and complete results are obtained only in the context of
l,-spaces.

du) = clfls
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0. Introduction

The purpose of this paper is to show that, for certain classes of matrices acting
as bounded linear operators on euclidean spaces or on more general Banach
spaces, it is possible to find “large” submatrices which are invertible. In the
present context, invertibility is not considered in an algebraic sense but it rather
means that the inverse of the submatrix has a norm bounded by a constant
independent of the dimension of the underlying space. Before elaborating on the
precise meaning assigned to the expression “‘large submatrix”, we would like to
present two examples which illustrate well the concepts discussed in the sequel.

Let {¢;}/_, denote the unit vector basis of the n-dimensional euclidean space I3
and define the operator S, : [;— I3, by setting S,e; = e..;; 1 =i <n,and S,e, =0.
The operators {S,},_; all have norm one, are nilpotent and, clearly, they are not
invertible even in a purely algebraic sense. However, by deleting the last row of
the matrix representing S,, i.e. by restricting S, to the linear span [e,];_} of the
first n — 1 unit vectors, we obtain an isometry whose inverse exists and has norm
equal to one.

Even more interesting is the example of the operator T,: [5— [, defined by
T, =1+S,. Clearly, || T, | =2 and the spectrum o (T,) of T, consists of the point
A =1 only. It follows that T,' exists but, as a simple computation shows,
I T:' 1= Vn/2, for all n (simply, apply T, to the vector x =37, (— 1Y e, € 13).
This situation is not satisfactory from an asymptotical point of view since
| T | =, as n—co.

Consider now the matrix corresponding to T, and delete the even-indexed
rows and columns. The remaining matrix is actually the identity restricted to the
linear span of the odd-indexed unit vectors and thus its inverse has norm equal to
one.

The important fact about both these examples is that the well invertible
submatrix has rank proportional to the original rank, and the proportion remains
fixed in a manner independent of n.

It turns out that this statement is true in general. We prove below that there
exists a constant ¢ = ¢(M) >0 so that, whenever T: [;— 7 is a linear operator
of norm =M with | Te|,=1, for all n, then there exists a subset o of
{1,2,...,n} of cardinality || = cn for which

1/2
Ea,Te,- EC(ZM 2) s
2 €

j€a

for all {a;};c.. In the case when the condition || Te; |, = 1; 1 =i = n, is replaced by
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the existence of 1’s on the diagonal of T, one actually obtains a square submatrix
of rank Z cn which is well invertible.

The above result combined with a theorem of Ruzsa [26] yields an application
to harmonic analysis: it follows that every subset B of the circle T, which has
positive measure, is a set of isomorphism in L,, for some family {e"™*},cs of
characters with dens A >0 in the sense that

HfXB

for some constant d >0 and every f €& L,(T), whose Fourier transform is
supported by A. Surprisingly, a similar statement for p >2 fails to be true.
Moreover, the subsets B of T, which have this property for some p >2, are
precisely those for which T can be covered, up to a negligible set, by a finite

= dllf

2y

number of translates of B.

Another application to infinite dimensional Hilbert spaces consists of the
assertion that every Hilbertian system of normalized vectors in a Hilbert space
contains a subset of positive upper density which is also Besselian and, therefore,
equivalent to an orthonormal system.

Similar invertibility results hold for matrices T acting on I,-spaces, | Sp =
as bounded operators provided they have 1’s on the diagonal. In the case p > 2,
this condition can be replaced by the requirement that | Te; |, =1; 1 =i = n. For
1= p <2, the condition | Te|, =1; 1 =i = n, does not even necessarily imply
that T has rank proportional to n. This part of the paper is probably the most
difficult.

The invertibility theorem in the case 1<p#2< o has some immediate
applications to the geometry of Banach spaces. Namely, it yields the solution to
two problems raised by W. B. Johnson and G. Schechtman in [13]. More
precisely, it is proved below that any well-complemented n-dimensional sub-
space of L,(0,1); 1 < p# 2 whose euclidean distance is maximal (i.e. = cn"? 7",
for some constant ¢ > 0) contains a well-complemented subspace of dimension k
proportional to n which is well isomorphic to [. Furthermore, it is also shown
that any system {f};_, of functions in L, (0, 1); 1 < p <, which is well equivalént
to the unit vector basis of [}, contains in turn a subsystem {f},c, with |o|
proportional to n whose linear span is well complemented in L,(0,1).

In addition to invertibility theorems for “large” submatrices of matrices that
act as ‘“‘bounded” operators on [,, we obtain some unexpected results for
“unbounded” operators, too. The extremal case of a linear operator T: Iz — I3
with || T|| = M, for some M <, and with 1’s on the diagonal, illustrates well this
case. The columns of the corresponding matrix of such an operator T are
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clements of norm=M in [}. Thus, by applying a well-known combinatorial
result from [4] or [13], one can find a doubly-stochastic submatrix S, of S =T — I
of size k X k with k ~ n/M*. In fact, one can even ensure that S, has norm <}
in both [{ and [l%. This would imply, by an immediate interpolation argument,
that T, = I+ S, i1s a k X k-submatrix of T whose inverse is of norm =2 in every
[¥-space, 1 =r =x.

It appears that a somewhat similar result holds for any “bounded™ linear
operator T on I}}; p >2, with 1’s on the diagonal or with || Te, ||, = 1, for all i. It is
proved in the sequel that such an operator is invertible in the above sense (i.e.
when it is restricted to a subset of the unit vectors whose cardinality is a fixed
percentage of n) not only in [; but also in [7'; 1 = r < p, in spite of the fact that it
need not be well bounded in all these spaces. For 1 < p <2, exactly the same
type of result holds whenever T has 1's on the diagonal and 1=r=2.

It is perhaps interesting to point out that the nature of the invertibility is not
necessarily the same for the whole range 1 =r =2. For p =r =2, one actually
obtains a stronger form of invertibility, namely, a square submatrix which is
invertible. In the range 1 = r < p, as examples below show, this need not be true.

The paper also contains a generalization of the results obtained for matrices
acting as ‘‘bounded’ operators on [;-spaces to the case of operators on spaces
with an unconditional basis. In this case, however, we are able to prove only the
existence of well invertible submatrices of size k X k with k = n' ™, for any € >0
given in advance. The next section contains some results of a non-operator
nature. We conclude with some polynomial estimates related to some results
from [15].

The results presented throughout the paper apply to real as well as to complex
spaces and in most of the cases there is no difference whatsoever. The only
exception occurs in Section 5 which is based on J. Elton [8] and, therefore, is
valid only for real spaces. However, by using A. Pajor [23] instead of [8], one can
also extend these results to the complex case.

1. Operators on euclidean spaces

In the first part of this section, we present a theorem on the invertibility of
“large’ submatrices of matrices with “large” rows which act as bounded linear
operators on finite dimensional euclidean spaces.

In the second part, we prove a different version which applies to matrices with
“large” diagonal. Actually, this result implies the one for matrices with “large”
rows and, in some sense, is more satisfactory since it produces an invertibie
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submatrix of square type. However, the dependence between the rank of the
invertible submatrix and that of the original one is best possible in the former
and much worse in the latter.

ProposiTioN 1.1, Let T: 15— 1% be a linear operator such that | Te,
l=i=n. Then

=1;

5

rank T=n/| T

ProoF. Put k =rank T. Then, since the Hilbert-Schmidt norm || T|jus of T
can be estimated by || T |lus =|| T||\/k, we get that

n=§HTe1

which completes the proof. O

=T

=T

Zk’

Remark. The estimate above is sharp. Indeed, if n = k - m, for some integers
k and m, and T: I5— I} is defined by

Te.p = e ; l=isk 0=j<m,
then, as is readily verified, rank T =k and | T|=vm, i..
rank T =n/|| T

This observation should be compared with the estimate obtained for | o | in the
statement of our next result.

THeEOREM 1.2. There is a constant ¢ > so that, whenever T: [5— 1% is a

linear operator for which || Te;|l.=1; 1 =i = n, then there exists a subset o of

Tl so that

{1,2,...,n} of cardinality (o] = cn/|

> a;Te, :§c<2|a,}3>”2,

jEo jEa

for any choice of scalars {a;};c...

The proof requires some preliminary lemmas. The first consists of an
inequality of Bernstein (see e.g. [2]) which is quite well known in a more general
form than it is stated here.

LemMA 1.3. Fix 0<8 <1 and an integer n, and let {£}_, be a sequence of
independent random variables of mean 8 over some probability space (£,%, 1)
which take only the values 0 and 1. Then the deviation

)

Dy={w e,

‘2 &(w)—6n
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satisfies

“(Dy)g2e—w<zsu-mn+3w3,.
In particular,
p(Ds,p) =2e ™
The next lemma will be proved by a probabilistic selection.

LEMMA 1.4. There exists a constant ¢, >0 so that, whenever T: [1— 1% is a
linear operator for which || Te,|l, =1, 1 =i =n, then there exists a subset o, of
{1,2,...,n} of cardinality |o,|= c,n/|| T’ such that

” PIT"IlrErrI (-)(Te')

,<1NV2,  i€a,

where P\, .. denotes the orthogonal projection from I3 onto [Te;};c,.

5

Proor. Take & =1/8| T| and let {&};, be a sequence of independent
random variables of mean & over a probability space (€},3, u), taking only the
values 0 and 1. For each w €}, put

c(@)={1=j=n; §(w)=1}.

The variables {&}7., will act as selectors and the set ¢, will be, essentially
speaking, one of the sets o(w), for a suitable choice of w €.
Put x; = Te;; 1 =i = n, and notice that

=8| S P )lEd

[ 3 e@lPuc. )

1 i=1

=5 SPums. T du
=5 [ NP Thodn

=8| T | 3 6(0)du
= 5| TIF.

In particular,

|3 e Punn R de = 5%n) T

which implies that there exists a point w, € ) ~ D;,;> such that
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.

2 Py )P =80T

i € a{wn)

and
lo(w)] = 2 & (wo) = 8n/2.
Put

<2 TV

o ={i € o(wy);|| P“XIH’E”W o ()
and observe that

4T

5l a(w)~ o= 8| TIF=2|| T

28'0'(‘00”,
ie.
‘U[’g 8"/4

In view of the choice of § made in the beginning of the proof, we conclude that

,<1/V2,

“ Plxlilz-rr m(xz)

fori € oy,and |o\| = n/32|| T a

THeorReM 1.5. There exists a constant ¢, > 0 such that, whenever T: I5— I3 is
a linear operator for which || Te, |, =1; 1 =i = n, then there exists a subset o, of
{1,2....,n} of cardinality |o-|= c,n/|| T| so that

2 a;Te;

jE o

écl 2 ’all/\/‘a'l

2 jE o2

]

for all {a;};c...
PrROOF. Let ¢, and o, be given by Lemma 1.4, and put
ul=x; — P[x,,,E,l o(x); i €0,
Then (x,,u}) =0, for i,j €0, and i# j, and also (by the choice of a,)
(i, ) = 1= Py, ()| > 1/2; i€o.
It follows that 1=|lu}|,Z3; i € 0y, and thus the vectors
= u'ffuill

satisfy (x;, ;) =0, for i,j € o, and i#j, and (x;, u;)>3, i € 0\.
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Consider now the sets of tuples of signs

S eu

iE€m

%g = {(Ei)iEmE{“ 1, + ]}‘;"‘[;

gz\/m}.

Since

S e

i€y

J

de= 3 [ulp=]ol.

[R=Xa1

it follows that
|€|=3-2"/4.

By a well-known result of Sauer [27] and S. Shelah [29] (see also [31]). if k
satisfies
k-1 ’0_]\
2> (7))
i =0
then there exists a subset o, of ¢, of cardinality k such that, for each tuple

{(&i)ieq., there is an extension (& ),e., which belongs to €. In our case, we can
ensure that k =|a,|/2 and thus

'(Tz ;Cln/:Z“TH:

In order to complete the proof, for any choice of {a,} ¢, write a; = b; + ic,
with b; and ¢; real numbers, for all j € o, and select signs (87),c,.and (6");e .
such that b6;=|b;| and ¢,07=|¢|; j € 0. Then let ()., and (&’);e be
extensions of (8),... respectively (87); ... which belong to €. It follows that

aVia | IS axff = |< > ax., D (e ie',’)u,>
jE T2 2 €2 jE oy
=| 2 Wb+ D+ ilce;— be)x. u)
jEo2

= > (b ]+ )(x, 1)
j€ o

> a2,
j€ouz

which completes the proof. a

We shall present now two versions for the completion of the proof of Theorem
1.2, After the first draft of the paper was written up, N. J. Kalton suggested to
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replace the exhaustion argument, appearing below as the first version, by a
Maurey-Nikishin factorization type of argument. This is indeed possible and
would shorten the proof. However, the proof of the factorization theorem given
in [22] is quite complicated and in order to keep the paper as self-contained as
possible, we prefer to give here a direct factorization argument which is adapted
to the requirement of this proof and is very elementary.

Proor OF THEOREM 1.2 (first version — an exhaustion argument). Let
T: 13— 15 be a linear operator for which x;, = Te,; 1 =i = n, have all norms
equal to one. Let x, and o- be given by Lemma 1.5. The proof of 1.2 will be
completed once we establish the existence of a subset o of o, of cardinality

/2 such that
12
éCQ(Z'a]’F) /4’
2 j€Eo
for any choice of {a;};c..

Suppose that this assertion is false. Put 7, = ¢, and construct a vector
yi = 2. byx; such that ||y, < c,/4 but 2, | by, F=1.

Assume now that we have already constructed subsets 7, D 7. D -+ D 7, with
|7 |=]0,|/2 and vectors {y}i., such that y, =%,c.bx, ||y|.<c./4 and
Sie.lb;[F=1, for 1 =i =1 Consider then the set

!
7l+1={j671;2!bi‘i|2<1]

and if | 7., | <| 0,|/2 stop the procedure. On the other hand, if | 7,.,| Z| 0 |/2 then
there exists a vector

lolz]o

2 a;X;

j€o

Yier = 2 b1+1,,'x,'

JE T

such that ||y | < c./4 but Zjeq. b, P =1.
Suppose that this construction stops after m steps. Then

ITm+1|< !Uz|/2

and, thus, for j € o, ~ 7,41, We have

SibsPz1
i=1

with the convention that b,; =0 for those i and j for which it is not defined
(notice that if j €7 ~ 7., for some 1=1=m, then b, is defined only for
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1=i=1). Hence,

le.
mz= | 0'3!/2.

On the other hand, by Lemma 1.5, we have

cﬁ\/m (21' )

However, the inductive construction described above yields that
> 1b,F=2,

for all j € ;. Indeed, this is completely clear if j € 7,,., while, for j €E 7, — 71,4
1=1=m, we have

Z b‘l|2 zlbu|2+|bu\2<2

It follows that

172

Vm[o,[2> 3 V2 (2 5,F) =

j€o2

INZE

I bi.i ,2 = m7

jEo2i
ie.

This estimate contradicts, however, the fact that m = | o|/2. O
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PrOOF OF THEOREM 1.2 (second version — a factorization argument). Let again
T be a linear operator as above and x; = Te;; 1 =i =n. By Lemma 1.5, the
operator S: X =[x }ie.— [, defined by

Sx; =¢/Vio,

; 1 € o,

satisfies | S| = 1/c.. The dual S* of S maps [ into the Hilbert space X and, thus,
its 2-summing norm satisfies

m(S*)=Ks||S* = Ks /e,

where K denotes, as usual, the constant of Grothendieck (see e.g. [20] 2.b.7).
By Pietsch’s factorization theorem [24], there is an operator U: [:— X with
| Ul| = m(S*) and a diagonal operator D: 17— I3, defined by De, = A¢; ; 1 =i =
n, with =7_, | A; " = 1 so that $* = U(D). Dualizing this factorization diagram, we
conclude that § = D*(U*), where D*e; = Aie; ; 1 =i = n. It follows immediately
that

U*xi =e,’/A,'\/!O'1

N ]EO’:

The operator U* will be a ““good” isomorphism on that portion of o, where A;’s
are not too large. To this end, put

o={j oy N|=V2| o}
and notice that, for any choice of {4;},c., we have

2 ax; 2/0;2. U*(Z a,-x,-)

j€a j€o

=(Slanviel) (S 1ar) " /va

This completes the proof since

Kq

a

lé 2 ')\I|2§2|02~U|/102|,

jEo2~0o
ie.
EEra »

We pass now to the study of matrices acting on finite dimensional euclidean
spaces which have 1's on the diagonal.
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THEOREM 1.6. For every M <~ and € >0, there exists a constant c =
c(M, £)> 0 such that, whenever n 2 1/c and S: 13— 13 is a linear operator of norm
| S|l = M whose matrix relative to the unit vector basis has 0’s on the diagonal, then
there exists a subset o of {1,2,...,n} of cardinality |o|= cn such that

IR.SR, [ <e,

where R, denotes the orthogonal projection from I3 onto the linear span of the unit
vectors {e.}ic..

Theorem 1.6 has the following immediate consequence.

CoroLLarY 1.7. For every M <o and & >0, there exists a constant d =
d(M, £)>0 such that, whenever n 2 1/d and T: I;— 1} is a linear operator of
norm || T|| = M for which the matrix relative to the unit vector basis has 1’s on the
diagonal, then there exists a subset o of {1,2,...,n} of cardinality |o | = dn such
that R, TR, restricted to R,l; is invertible and its inverse satisfies

(R, TR, Y| <1+e.
The proof of Theorem 1.6 requires some preliminary results which in view of

further use in the sequel, are presented in a form more general than actually
needed in this section.

ProposiTION 1.8. There exists a constant A <« with the property that, for any
1<r=2,0<8<1and8d e’=vy =38, wherer' =r/(r — 1), one can find an integer
ny such that, whenever n = n, and {£},_, is a sequence of independent random
variables of mean & over some probability space (1,2, n) taking only the values 0
and 1, then, with m =[vyn], we have

I5<4].-(J.

§A-<Wm/8,.)>w-llc|

for any choice of c =2}, ce, €1] with¢, =0; 1=Zi=n

n

2 c (o)

i=1

"dp))

rs

Proor. Fix r, 8 and y as above, and take n large enough so that n''™ =2.
Then, for any ¢ =2/, ce; €I with | c|, =1, we have

A E e, a@be)r b))

IZit 42, imEn’

Ym
_ . hiigeening)
—( z CiCipt €, 8" "') s
1=i. 62, im=n
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where h(iy,i,...,i,) denotes the number of distinct integers in the tuple
(i1, iz, . . ., in ). By using Holder’s inequality in an obvious way, we conclude that

ici& . Zé

where {£}/-, is a sequence of independent random variables of mean 8" taking

=

1r
s
m

only the values 0 and 1.
Since, for each 1=k = n, we have

klwEY Z €(w)= k} = (;’) 31— 8"

it follows, by using Stirling’s formula, that

noo_ n ) 1/m
sl 550 (1))
i=1 m k=1 k

nl/m . Irilkasx k ‘(enar‘/k)k/m

A

=2m sup A(ed /Ay).

A=>0

However, ‘the supremum on the right-hand side is attained for A = A, which
satisfies

1 2
S AT .
log(v/8") log(y/8")

Hence, one can find a numerical constant 1= A <o such that

|54 2 ()

which, of course, completes the proof. a

The proof of Theorem 1.6 requires the use of a variant of the so-called
decoupling principle.

This principle can be found in literature, mostly for symmetric matrices. For
sake of completeness, we give here a proof of the version needed below.

ProrosiTiON 1.9 (a decoupling principle). Let (1,3, ) be a probability space
and (0,3, u') an independent copy of (2,2, w). Fix 0<<8 <1 and let {&}}-, be
a sequence of independent bounded random variables of mean & over (1,2, u).
Then, for any double sequence of vectors {x;;};-. in an arbitrary Banach space X
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such that x,;, =0; 1 =i = n, we have

du@)=0 [ | “ Y (@) (@)%,

iLj=1

H(@)§ (w)x, dp'(0")dp(w).

ij=1

Proor. We shall prove first the statement under the assumption that {&},
are ail of mean 0.

Let {n;}/-, be a sequence of independent random variables of mean ; over a
probability space (U, 9, v) taking only the values 0 and 1. Then, for each
1=i#j=n, we have

J” i (u)(l t ni(u))dV(u) _1
Hence,

du(w)

Zawmmm,

ij=1

n

3 [, m -] swsws,

Lj=1

du(w)

—4f

=4[ [ |3 nwa-nweses,

ij=1

du(w)dv(u).

For each u € U, put
cuy={I=i=n;n(u)=1}

and note that

SE

However, for each fixed u € U, {£&}ic., are independent from {£};z.,. Hence,

=),

which implies the existence of a u, € U so that, with the notation o (u,) = o, we

get
1=4f |
Q !

On the other hand, since {£}=, are assumed to be of mean 0, by taking the
expectation with respect to the subfield generated by {&(w)e, in 2 and

> &(w)E(0)x,] du(w)dv(u).

i€o(u) jEa(u)

> D E(w)E (@) du'(w)du(w)dy(u)

i€o(u) j&Eo(u)

> > E(0)E (x| du'(w))dp(w).

i€o j€o
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{&(w')}er in X', we obtain that

=],

We pass now to the general case where {£}/., are assumed to be of mean
8 >0. Then

I

du'(0)du(w) = 1/4.

3 & (@) (@)x,

[l 2 & (@)x,,

iLj=1

2 (& (@)~ 8)(&(w)— 8)x,; dp(w)

ij=1

{w)x; |l du(w)+ 8°

ij=1 j=1

By introducing inside the expression (|7~ & (w)& (w')x;; | the expectation
with respect to u or with respect to u’ or with respect to both u and u', we
check easily that J exceeds each of the last three terms in the right-hand side of
the above inequality. Hence, in view of the result proved for random variables of
mean 0, we get that

r=af |
a Jo

§7J+46J 2 £(w)x,

Q {tif=1

=10J. g

{w)—8)(&(w)—8)x, i dp'(w')du(w)+3J

d’ (w')+432|| 2 %

@ +as |3 g,

Lf=1

The main and the most difficult part of the argument needed to prove
Theorem 1.6 is given in the next proposition, where we show how to select a
submatrix R,SR, of S, of size proportional to that of S, so that R,SR, would
have small norm when it maps [ into I]. Again, the result is presented in a more
general form than needed.

ProposiTion 1.10.  There is a constant D <o with the property that, for any
0< 8 <1, one can find an integer n(8) so that, whenever | =p =2, n =z n(5) and
S is a linear operator on I, whose matrix (a;,);;-, relative to the unit vector basis of
I, has O’s on the diagonal, then there exists a subset 7 of {1,2, ..., n} of cardinality
|7|=m =[8n] for which

IRSRx], = DIS) (jo5firzs) Il
for any x €1,.

Proor. Fix 1<p=2,0<8<1 and let S and (a;)i;-: be so that Se, =
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Sroiage s 1 =1 = n Let {&}7-, be a sequence of independent random variables of
mean & over some probability space (2, 3, ) which take only the values 0 and 1,
and let (¥, 3, ') be an independent copy of (2,2, w).

For a linear operator W on R", we shall put

Il Wl = suplm | Wxlly; x € 1. [Fxfl, = 1},
where again p'= p/(p —1). Note that, for any such W,
Wi =28 wi.

where || W| denotes the norm of W as an operator from [ into itself.
Since a; =0; 1 =i = n, we can use the decoupling principle Proposition 1.9
and get that

1= H 2 bk @ae e \du(w)

= 20J j ’
O Ja

where, for each w €Q),

2 2 &(w)age Qe

i€r{w) j=1

‘ du(w)du' (@),

Tw)={1Zi=n;&(w)=1}
By Lemma 1.3, the subset
O={we€Q;{r(w)|=25n}

of Q has measure =2e *'". Thus

=] [ |
Q-0 Jw

§4O sup I(¢)+4()5 (| Sle ™,

> Zg(w Jae e,

i€t(w}) =

‘ du(w)dpe' (') + 405 7| S|l e >

where

ZE&(m)a e ®e;

TET j=

du(w).

o |

Fix now a subset 7 of {1,2,..., n} of cardinality |7|=m, take c.g. € =! and
choose an g-net (7) in the unit ball of R, so that

| F(r)[=@2/e)" =4"
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Since any vector x in the closed unit ball of R.I; can be expressed as a
combination x =37, Ax; with x; in %(r) and A; =0, for all j, such that
YA =2, it follows that

I(T)gzm"“”f“ max {2

1=1

o], (2]

> a:.ibn“ o) x = E be. € 9;(7)} du(w)

i€r iEr

iA

" Tx = 2 be &€ 95(1')])”"‘ dp(w)

T

2 a.-,,-b.«‘ & ()

iET

n

>

j=1

X = 2 be € 97(7)]

iEr

sl

er

=2m | F(r)|" max{

n

2 i

j=1

§8H5Hm"””'-max{

=S ce El;,Hcll,,él} .
=1

m

Thus, by using Proposition 1.8 with y =6 and r = p, we get that
1 =1/p’
I(T)= D|IS|- (log E) ,
for a suitable constant D,, independent of p and n. Hence

1 -1/p’ )

1=40D,) S| (l()gg) 1405 S ]e

from which we derive that there exists a point w, in the set

A={weQ;m=), g,.(w)gz.an/z}
i=1

such that

\ip'

5 ae®el||[zDs(0g]) .

L ET(wn)

provided n is large enough relative to 8 as to ensure that

e M <_l_)g . < o )UI"
=30 \log(178)) -

Since m =|7(wy)| =38n/2 we complete the proof by taking as 7 any subset of

7(w,) which has cardinality m. a
We are now prepared to return to Theorem 1.6.

PROOF OF THEOREM 1.6.  As in the case of Theorem 1.2, there are two ways to
complete the proof: by an exhaustion argument or by a factorization method.
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We shall present here only the second alternative. The proof is very similar to
that of the factorization argument used to complete the proof of Theorem 1.2.

The starting point is Proposition 1.10 which asserts the existence of a constant
D so that, for any 0< 8 < 1, there is a subset 7 of {1,2,..., n}, n = n(8), with
|7]| = m =[8n] for which W = R.SR,, considered as an operator from [} into [},
has norm = D||S||(m/log(1/8))"?. Since W* maps I% into I} it follows, by using
Grothendieck’s inequality and Pietsch’s factorization theorem, that there exist
an operator U: [3— 1[5, with |U||=1, and a diagonal operator V:['— 4,
defined by Ve, = Aje;; 1 =i = n, with

2“" F=(KsD||S|) - mflog(1/8)

so that W* = U(V). By dualizing this factorization diagram, we conclude that
W = V*(U*), where V*e¢, =\e; 1=i=n. Set
o={1=i=n;|N|=2K:D| S|/ Viog(1/8)}
and note that
lo|=n(1—-6/4).

Furthermore, for any x € I3, we have

| R.SR,x|. = || R,WR,x

) = “ R,,V* U*R,,x

5

é(meax!/\.- |>|| U*R,x

. =2KsD||S |- || x [/ Viog(1/8),

| R.SR, | =2KsD | Sli/Viog(1/8).
Therefore, if € >0 is given and § is taken small enough as to ensure that

2KD||S |/ Viog(1/8) < &,
then, indeed, | R,SR,,

<. |

REMARKS. (1) S. Szarek kindly brought to our attention that B. S. Kashin
proved in [15] results of a somewhat similar nature to Theorem 1.6. B. S. Kashin
shows in this paper that, whenever S is a norm one operator from I3 into I7, then
one can select a subset o of {1,2,...,m} of cardinality |o|=n such that
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| R.S| = B(log(m/n))'”, for a suitable B < <. This resuit is, of course, interest-
ing when m is much larger than n. Kashin’s theorem does not seem to imply
Theorem 1.6 directly. However, one can deduce it from his theorem provided it
is used in conjunction with the decoupling principle and other arguments given
in Proposition 1.10. In Section 8, we shall present some improvements of
Kashin’s results.

(2) K. Ball and the second-named author obtained previously (unpublished)
some weaker version of Corollary 1.7 (e.g. with || = dn®”, for some d >0).

(3) Theorem 1.6 implies Theorem 1.2 since || Te; |, =1, for all 1 =i = n, yields
that the matrix corresponding to the operator T*T has 1’s on the diagonal.
However, the dependence between the cardinality of o and the norm of T that
we obtain in Theorem 1.6 is of the form | o | = dne "™ for a suitable d > 0. This,
of course, is much worse than the estimate given by Theorem 1.2.

2. Applications to harmonic analysis and Hilbertian systems

The natural extension of the notion of “cardinality proportional to n”” to an
infinite setting is that of positive density or upper density. Recall that, for a set A
of integers, the upper density dens A and the lower density dens A of A are

defined as lim,_.., respectively lim, .., of the sequence

IAN{1,2,.... n}l

n

: n=1,2,....

If densA =dens A then their common value dens A is called the asymptotic
density or simply the density of A.

The first part of this section is devoted to the study of some questions
concerning the characters on the circle. The notation related to this notion will
be the standard one. Throughout this section, the circle is denoted by T while v
stands for the normalized measure on T. For 1 = p = and A a subset of the
integers, we shall denote the closed linear span of the characters {€™},ea in
L,(T,v) by L)(T,v).

We start with a result which asserts that, for any subset B of the circle T with
v(B) >0, there exists a subset A of the integers of positive density such that
L (T, v) contains no function vanishing a.e. on B. This result solves a question
raised by W. Schachermayer.

Quite surprisingly, the situation differs completely for p > 2. This follows from
a characterization of those subsets B of the circle which have the above property
in L,(T,v); p>2.
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The last part of this section contains an extension of the theorem in L,(T, v) to
the more general case of Hilbertian systems.

In order to simplify the statements of some of the results presented in the
sequel, we introduce the following definition.

DerNiTiON 2.1, A subset B of T is called a set of isomorphism in L, ;
1=p <=, for some family of characters of positive density if there exist a
constant d >0 and a subset A of the integers with dens A >0 such that

If - x|

pzd-|f|

P
whenever f € L (T, v).

THEOREM 2.2. Every subset B of the circle T of positive measure is a set of
isomorphism in L., for some family of characters of positive density. More

precisely, there exists a constant ¢ > 0 so that, for any B C'T, one can find a subset
A of the integers with dens A = cv(B), for which

Iz 0f xslez ¢ Vo(B)-[f]
whenever f € L3(T, v).

29

PrOOF. Suppose that v(B)> 0; otherwise, Theorem 2.2 lacks content. Let T
be the operator acting on LT, v) which is defined by

T(f)=f xa/Vv(B); fELA(T,v),

and note that | T| =1/Vv(B).
By Theorem 1.2, there exists a ¢ > 0 such that, for each n, there is a subset o,
of {1,2,...,n} of cardinality

0,12 enf| T fpzs = env(B)

for which

IxeflZ ¢ Vv(B)|f

2y

whenever the Fourier transform of f is supported by a,.
Consider now the family # of all finite subsets o of the integers for which

Lb=c \/m””‘z,

| xsf

whenever the Fourier transform of f is supported by o. The family # is
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homogeneous in the sense of [26] Definition 3.1, i.e., for every o € 7, all the
subsets and translations of o belong to #. For each n, put

d.(¥)=max{|e N{1,2,...,n}|/n;0 € %}
and note that

d(%) =lim d.(¥)
exists since {d, (¥)}.-: is a non-increasing sequence. Since clearly o, € ¥, for all
n, we easily conclude that
d(¥)> cv(B).

Now, by I. Z. Ruzsa [26] Theorem 4, there exists a set A of integers whose
finite subsets all belong to # and

dens A = d(F).
This, of course, completes the proof in view of the definition of #. |

ReMARK. The use of Ruzsa’s result to pass from the finite setting to a density
statement was pointed out by Y. Peres. Our original proof yielded only upper
density.

As we have mentioned above, Theorem 2.2 fails for p>2. This is an
immediate consequence of the following result.

THEOREM 2.3. Let p >2. A subset B of T is a set of isomorphism in L,, for
some family of characters of positive density, if and only if T is the union of finitely
many translates of B, up to a set of measure zero.

The proof of Theorem 2.3 requires two preliminary lemmas.

LemMMa 2.4. There exists a constant C < ® such that, whenevert €T, ¢ >0,T
is a subset of integers for which |1 —e™|<eifn €T andfE€ L, (T,v);1=p <,
then

If = flle = Ce | fllo,
where f,(x) = f(x +t) denotes the translate of f by t.

Proor. Recall the classical fact that 1 —e™ is a function of spectral synthesis,
i.e. it can be approximated in the space A(T) of the absolutely convergent
Fourier series by functions which vanish in a neighborhood of x =0. More
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precisely, there exists a constant C < x so that, for every £ >0, one can find a
function F, € A(T) for which

(i) F.(x)=0, whenever x €T satisfies |1 —e* | <¢,
and

(ii) [1-e” = F, () ]am < Ce.
A simpie proof of this assertion, originally due to N. Wiener, can be found, e.g.,
in [16].

The above properties of F, imply that if we put

l-e*—F.(x)= E ae”,

j=—x

then

i la;| < Ce,

j=—x

and, furthermore, that

whenever |1 —e” | <e.
Fix now t €T and £ >0, and let ' be a subset of the integers for which
|[1—e™|<e; n€T. Then, for every f € L)(T, v), we have

I £l =] 3 Foya - e=ye,

o

= 2 a;fi

j=-%

4

o
= 2 lallifill
=

< Celfll- O

LEmMMA 2.5. Fix ¥ >0 and a positive integer r, and let B be a subset of the
circle T such that

V(L;J (B+tk))<1,
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for any choice of {t.}i-, in T. Then there is an integer | with the property that, for

every sequence {t.}i-, of points in T, one can find a dyadic interval J so that
v(J)=2" and v(J+t)NB)<y-2",

for all 1= k = r. Furthermore, the assertion remains valid if | is replaced by any
other integer larger than it.

Proor. We need first some additional notation: for any vector
{-:(t;,t}_,...,t,)

in T" and any dyadic subinterval I of T, we put

e (1) = V(I N U (B—tk)>/v(1).

It follows from the Lebesgue density theorem that, for any ¢ € T', one can find a
dyadic interval I(f) so that

o) <.
Moreover, since T" is compact and, for each I as above, ¢; is clearly a

continuous function, one can choose finitely many dyadic intervals {I,};-, so that

lg}'lfl:]H (P"‘ (t) < Yv

for all t €T'. Suppose that v(I,)=2""" for some positive integer I(h);
1=h=H, and let | be any integer larger than max..=n!(h). Each of the
intervals I, can be split into a union,

Ih = U Ih,iv

ican
of mutually disjoint dyadic intervals {I.;}ics, of length 27" and
en(D= 3 W) vU)enllys TET
Hence
v > mi‘n, ()= Jr‘li’q‘ lrg:iﬁx 2v((J + )N B),

which clearly completes the proof. t
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ProorFOF THEOREM 2.3.  Suppose first that B is a subset of the circle for which
there exist points {t.}r-, on T such that

V<kC"Jl (B+tk)>=1.

Then, for any function f € L, (T, v), we have

71 = S0 xalh = m-Dxall+ 2 07— Full
Let C be the constant given by Lemma 2.4, take ¢ = 1/2Cm and put
Ale)= {n €Z, [max [1—e™| < e} .

In view of Lemma 2.4, whenever f € L,“(T, v), then

Ifllo = mlif- xall, + Cmelif}],,

ie.

fxsllo Z 1 fll, /2m,

and the proof of the “if” part will be completed provided we show that
densA(e)>0. To this end, consider the group homomorphism ¢:Z—T",
defined by

Y(n)y=(e"™, e, ..., e"); nez.
The fact that A(e) is of positive density is a consequence of the compactness of
T™ which implies that the range of ¢ can be covered by open sets of the form
G = {f =(Xi, X2y, X )ET™; [max le —e™ | < g} ; JEA,
with A being a finite set of integers. This yields that
2= I,
jea
where
I'={n €Z;(nt,,nt,,..., nt,)E G}; jEA.

However, as is easily verified, for each j € A, the set [} is a j-translate of A(e),
1.e. Z is a finite union of translates of A(e). This implies that dens A(e) > 0, thus
completing the proof of the “if” part.
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In order to prove the coverse, we assume now that BC T, ACZ and ¢ >0 are
so that

(i) densA>¢,
and

(i) [ fxsllo = clifllos fELNT, v),
and, moreover, that

v<L’:J (B+tk)><l,

for any choice of {#}i-, in T, m=1,2,....

Take 7 = (¢*/2°)"* ™, r =[2°/7°] + 1 and y = ¢**/r - 2", and let | be an integer
satisfying the assertion of Lemma 2.5, for the above values of r and v, and so that
the set

A={nEA;Int=2"}
has cardinality |Ay|> ¢ - 2",

Consider now the function

F(x)= > e™;, x€T,

nEAn

and choose a maximal system {t }i-, of 27" '-separated points in T such that

|F(t)|=7-2'; 1=k

1A

m.
For each 1=k = m, put

W.={x€ET;|x—t|<7-27"77}
and note that, whenever x € W,, we have

IF(X)Ile(tk)|—|F(tk)—F(x)|

;7__21__ 2 |e""“—e""’l

nEAg
=T- 2‘ - lA(]|2’T . 27»175
>7-27

Hence

2z = j Ffdv= 3, jw |F()fdy = mr -2,
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from which it follows that

A

m=2.717<r.
This means that, by Lemma 2.5, there exists a point ¢t €T such that
v(I+t+4)NB)<y-27,

for all 1 =k = m, where I denotes the interval {—27"",27""]. Put
V=T~ (U+1+8)
k=1

and note that the translate F, of F satisfies

m

IFxalp= [ RGP+ F(o)ld

=1 JU+t+n)NB
= [ 1RPdy +mlEJEy -2
\'2

However, whenever x € V, then x —t is 27" '-separated from all the points
{t.}7-,. Hence, by the maximality of this system, | F(x —t)| < 7-2,ie.|F (x)|<
7-2'. 1t follows that

IF xolp< 27 [ IR Fdy-+m APy 27

=77 2 A A2
é (,TP*Z + my) . 21(p*1)+2p
which, by (if) and the fact that F & L:”(T, v)C L,(T, »), yields that
c|Fll, =W F - xall, S (7727 +(ry)"?)- 2772,

where p'=p/(p —1).
On the other hand, if J denotes, e.g., the interval [—27'"",27"7"] then, by
Holder’s inequality, we get that

2702 A < H F(x)dv
J

=|Fl, - 1T <|IF|l, - 27"

By combining these inequalities, we obtain
Cz <212(Tl—2/p + (r,y)llp)’

which, in view of the fact that 777 = ¢*-27" implies that



Vol. 57, 1987 INVERTIBILITY OF LARGE MATRICES 163

2V« (r . y)l/p.
This contradicts the choice of vy, thus proving the converse. O

CoroLLAry 2.6, If BCT is a set of isomorphisms in L,; p>2, for some
family of characters of positive density, then its closure B has non-empty interior.

CoroLLARY 2.7. There exists a subset of the circle with positive measure
which, for each p > 2, is a set of isomorphism for no family of characters of positive
density.

We return now to the study of systems of vectors in Hilbert space and present
a generalization of Theorem 2.2. First, we point out another way of expressing
the fact that the operator T, defined in the proof of Theorem 2.2, is bounded.
Namely, it can be asserted that the vectors ¥, (x)= xze ™. n e€Z, satisfy the

estimaté
+x 1/2
[Senle( S u)”

oo

for any choice of {a,}.=-.. This leads naturally to the notion of Hilbertian

4

> a9,

n=-x

systems.

DEFINITION 2.8. A normalized system of vectors {x,},-; in a Banach space X
is called Hilbertian provided there exists a constant M < such that

x x 172
> a.x. §M(2|an2> ,
n=1 n=1

for any choice of {a.}.-;. If the reverse inequality holds, i.e. if

e 12 x
(2|an|2) =M| > aux.
n=1 n=1

again, for every choice of {a, }.-,, then we say that {x, }, ., is a Besselian system.

s

It turns out that Theorem 2.2 can be extended to any Hilbertian system in an
arbitrary Hilbert space. However, instead of positive density we can prove the
corresponding statement only with positive upper density.

THEOREM 2.9. There is a constant d >} such that, for every Hilbertian system
{x.}:-1 in a Hilbert space X with constant M, for some M < «, there exists a set A
of integers with dens A = d/M? so that {x,}.ex is also Besselian with constant d™".
In particular, {x,},cr is Md™'-equivalent to an orthonormal system.
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Proor. For simplicity, we shall suppose that the underlying space X is [,. Let
{e.}7-1 denote the unit vectors in I, and let R, and R, be the orthogonal
projections from I, onto [e]i=;, respectively [e ]~

The hypothesis that {x,}»-, is a Hilbertian system with constant M < can be
translated into the fact that the linear operator T on L, defined by Te, = x,, for
all n, has norm=M.

Let ¢ >0 be the constant given by Theorem 1.2 and let {r,},-, be a sequence
of positive reals such that

el 172
T=(2 ‘ri) <c/2M.
n=1

We shall now construct two increasing sequences of integers {¢.}»-: and {r.} -, in
the following way. Put g, =1 and choose r; so that

IR <72

n '["111 ql*l

Note that

11m IR, 2 |=0

{(x ]1 =q+1

since, otherwise, one could construct a sequence {n.}.-: of mutually disjoint
subsets of the integers and a sequence of vectors of the form u, = 2c,.cx; SO
that || u, [, = 1 but | R,,(u..)|: Z @, for some a >0 and all m. Since w-lim, .. tn =
0 we can assume, by passing to a subsequence if necessary, that {u,}.- is an
orthonormal system. This would imply that we have

gz IR () SR s =i,

for all k; and, hence, contradiction. It follows that we can find a g, > q, so that
|| R n s ]Zqz " ” < 72/2.

Then we choose an r,> r, so that

”R 24; ”< 72/2.

gy qye1
Continuing so, we construct, by induction, two increasing sequences of integers
{g.}=-1 and {r.}7-1, for which

IR.. 2 [<7/2 and IIR,N o <772,

I(x 1 'l [x]j = qn+1

for all n.
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Fix now n and apply Theorem 1.2 to the operator Ty, ., . It follows that
there exists a subset o, of {q. +1,q.+2,...,2q.} so that |, | = cq,/M* and

S ax| zc( 3 laF)",

j€on j€Ean

for any choice of {4};c.,.
Consider the set A= _, o, and observe that, for each n, we have

[AN{1,2,..,2g.}| _|oul ¢
24, =2, S M

i.e., densA=c/2M*. Furthermore, for any choice of {a;};., such that
2::12]'60,.

a;' =1, we have

o

ZEaxl

n=1 j€Eon

¥ (R.~R,.) T ax

i€on

- Zl ”(an-l + R,,‘) ]; alxl
12 =
) g

)

E

jEon IEUn

> i;"(m PN
;(znm ~R,.) S ax

j€an

It follows that

2 ax

j€on

g“(R,n +R.) D ax

j€on

(S+c/2) ;2

2¢ 3 S la F-rMe

n=1j

>3c’/4,

Sz (V3-1)c/2.
This, of course, completes our proof. a

REMARK. It is not true in general that, for any Besselian system or even basis
{x.}.-, there exists a set A of integers with dens A >0 so that {x,}.ca is also
Hilbertian. Indeed, fix 0 < a <3 and consider the vectors

=c(a)e' In|=0,1,2,...,
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where c¢(a) is chosen so that the norm of f, in L.(— =, 7) is equal to one, for all
n. It is known that these vectors form (under the above condition that 0 < a <1)
a conditional basis in L.(— 1, 7) (cf. [1]; see also [20]). The system {f,},Z_. is
clearly Besselian.

Suppose now that there exists a set A of integers with A = dens A > 0 such that
{f.}sea is also Hilbertian with constant M, for some M <o, Take B =
A2—a)/41—a) and choose an integer k for which the set A,
AN{L,2,..., k}satisfies | A, | = Ak /2. Then, by the Cauchy-Schwartz inequality,
we have that

Blk
J D@ des Y Ll - VBIks MVB.
0 nEAK nEAx 2
On the other hand,
Bk l-a Blk | _inx _
j S f.(x) dx;c(a)(JM%— S j }e—alldx>
0 nEAK (1 - CY)’( nEAL JO X
AB Tk J"”" sin(nx/2) )
= c(a) (2(1 —a) 2 ; ) e dx
u /\ - _ 27:1)
zZc(a)k (——‘@——2(1 i L2— <)
It follows, by taking into account the choice of B, that
C(Q}/\@I/Z—a k“ - M
41—-a) -

which, of course, is contradictory if k is sufficiently large.

3. Operators on [,-spaces; | =p =x

The main result of this section asserts that any matrix T with 1’s on the
diagonal which acts as a “bounded” linear operator on [}, for some 1 =p =
and some n, contains a square submatrix of rank proportional to n (the
proportion being determined by the norm of T) which is well invertible.

The cases p =1 and p =« are, essentially speaking, known (cf. [4] and [13])
though not exactly in the formulation given above. The proof in these two cases
uses a combinatorial lemma which asserts that any n X n matrix contains in turn
a submatrix of size proportional to that of the original one such that, for each
row, the sum of the absolute values of the off diagonal elements is reduced to
one half of what it originally was. The case p =2 has already been presented in
Section 1.
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In the case p > 2, the invertibility results hold also for matrices with “‘large”
rows (rather than “large™ diagonal, as above). This is no longer true for
1 =p <2. In this case, the rank of a n X n matrix with *‘large” rows need not
even be proportional to n. An example of when the rank is as small as possible,
i.e. of order of magnitude n*"; p’ = p/(p — 1), is given by the natural projection
from [;; 1 <p <2, onto a well-complemented Hilbertian subspace of maximal
dimension.

We begin with our first result.

THEOREM 3.1. Forevery 1=p =, M <x and ¢ >0, there exists a constant
¢ =c(p, M, £)>0 such that, whenever n = 1/c and S is a linear operator on I, of
norm || S| = M for which the matrix relative to the unit vector basis has 0’s on the
diagonal, then there exists a subset o of {1,2, ..., n} of cardinality |o | Z cn so that

| R.SR,

<e,

where R, denotes the natural projection from 1, onto the linear span of the unit
vectors {€:}ic..

As an immediate consequence, we obtain our main invertibility result.

CoroLLARY 32, For every 1=p=», M<x gnd &£ >0, there exists a
constant d = d(p, M, €) >0 such that, whenever n 2 1/d and T is a linear operator
| = M for which the matrix relative to the unit vector basis has 1’s

onl; of norm | T
on the diagonal, then there exists a subset o of {1,2,..., n} of cardinality |o | = dn
so that R, TR, restricted to R,l} is invertible and its inverse satisfies || (R,TR,)'|| <
1+e.

The proof of Theorem 3.1 requires some preliminary results. The first asserts
that any bounded linear operator on an {;-space is also bounded on {3 provided
that it is restricted to a suitable set of unit vectors of *‘large’ cardinality. This
result is, in fact, a direct consequence of a theorem from W. B. Johnson and L.
Jones [14]. We prefer, however, to give a direct proof based on an exhaustion
argument.

In order to distinguish between the different norms of the same operator, we
shall denote the norm of an operator S on I} by || S||,. Also, as usual, Ks denotes
the constant of Grothendieck.

ProposITION 3.3.  For every 1 =p =« and every linear operator S: I;,— I},
there exists a subset n of {1,2,...,n} such that |n|=n/2 and

” RnSRn H~ = 4KG “ N Hp
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PrOOF. We first observe that it suffices to prove the result for 2<p=w
since, otherwise, we pass to the adjoint S$* of S.

Suppose now that the assertion is false for some operator S: I;— I;. Then, as
in the exhaustion arguments presented in Section 1, we can construct subsets

TIOTaD " D T

of {1,2,...,n} with |7,|Zn/2 and vectors {y,}/~, in I3 such that ||y, |, =1,
Rn)’-’ = yiv

| R.Sy: . > 4Ks || S|, 1=i=m,

and if y, =2c.. b6 ; 1 =i=m, then the set
Tm+|={f67m;2 ’b-‘.i|2<1}
i=1

is of cardinality | 7,..,| < n/2 (with the convention that b;; =0 when j& 7,). Note
also that

=2 Eib,,r2>n/2

JETmrt i=1

=§llly.

By using Grothendieck’s inequality in the form presented in [17] (see also [21]
1.£.14) with the convention 1/p =0 when p =« it follows that

m 1/2
4KalSlm ' < (3 1y k)

|(E1s)7]

(2191)7,

(Sr)7,

i2-1
=n "‘

é KG “ S “pn 12-1/p

= Ko |S """

P

However, the above procedure yields that

for all 1 =j = n, and, therefore, we conclude that

ll/\
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2< .

which is contradictory. O

Proposition 3.3 together with the Riesz-Thorin interpolation theorem yield
immediately the following result.

CorOLLARY 3.4, For every 2=r<p or 2Zr>p=1 and every linear
operator S on I, there exists a subset nof {1,2,...,n} such that |m|=n/2 and

IR.SR,

c=4Ks| S|,

Corollary 3.4 cannot be improved beyond therange2=r<por2=r>p=1.
This fact is illustrated by two examples which will be presented in Section 5.

ProposiTioN 3.5. There is a constant K <o with the property that, for any
0<8<1/e, one can find an integer n(8) such that, whenever n = n(),
1 <r <2 andSis alinear operator on I}, then there exists a subset n of {1,2, ..., n}
of cardinality |n|=[8n], for which

| R,Sx |, = K(8n/(r'—2))"" -||Sx

if x €17 has support of cardinality =[5’n}].

Proor. Fix 8, r and S, as above, and put h =[8°n]. Then, for each subset o
of {1,2,..., n} of cardinality || = h, take £ =1 and select an e-net 4(o) in the
unit sphere of [Se]ic., considered as a subspace of I}, such that

| G(0)| = @le ) = 4",
Put
4=U{%0);0C{1,2,...,n},|o|=h}

and let {£}/-, be, as usual, a sequence of independent random variables of mean
8 over some probability space (1,2, u) which take only the values 0 and 1.

Then, with
m= [62 (log%) n] +1,

JZJ;l max{glcim(w);c=§c,eie<§} du(w)

(2{[Z s

we have

A

m
m

l e '—-Zcie,-eﬂg])”m.
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However, by Proposition 1.8, there exists a constant A < so that

g|c.'l§.-"m§A-((T___2)%_M)w,

for any choice of ¢ =3}_, ce; in I} with |[c||, = 1. Note also that, by Stirling’s

formula,
K (;’) 4" < (4en/h)" = (8e/8Y)",
ie.
log|4l=8°n (logSe +2log—é—> =58°n log% =5m.
Consequently,

m

J=l9["A ((r'—Z)log(l/B)

)W§2Ae5(82n/(r'—2))”".
Observe now that one can find a point w, in the set
O= {w €Q; sn2= 2 §,-(w)§36n/2}
such that
> e 1€ (00 =24e%(5 /' = 2)",

for all ¢ =57, cie, € 4 The proof can be now completed by taking as 7 any
subset of 7={1=i=n; &(w,)=1} which has cardinality [6n/2] (note that
|7]= 8n/2). O

PROPOSITION 3.6. For any 0< 8 <1/e* and M <, one can find a constant
d = d(8, M) >0 such that, whenever 1 <r <p <2 and S is a linear operator on I,
of norm ||S|, = M whose matrix relative to the unit vector basis has 0's on the
diagonal, then there exist a constant D,, depending only on r, and subsets n, and 1
of {1,2,...,n} such that |n,|=[dn], |7]|=[8dn], 7. D7 and

IR.Sx |, = D, (8%dn)" (|

Ry, Sxl, +[1x 1),
for all x €e]ic..

Proor. Fix 8, M and S, as above. By Corollary 3.4, there exists a subset 7, of
{1,2,..., n} so that |9,/ = n/2 and

| Roo SR ll: =4KM.
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Thus, by Theorem 1.6, one can find a constant d = d(8, M) >0 and a subset 7,
of my such that n, =|7,| ={dn] and

HRWISRﬂJh<:8{
Furthermore, by applying Proposition 3.5 to the operator R, SR, with r

satisfying the condition 1< r < p, we deduce the existence of a constant K,,
depending only on r, and of a subset 7 of 7, for which |7|=[8dn] and

IR.Sx [l = K, (5*n,)" || R, Sx

whenever x € Ry, [ has support of cardinality =[8°n,].

The main difficulty encountered in the present proof derives from the fact that
| 7] is larger, by 1/8, than the cardinality of the support of x, for which the above
inequality is valid. In order to overcome this problem, for x = £.c. xe; €[ e ].e.,

re

we put

o ={i€r;|x|<|x| /(8 n)"}, y=R.,x and z=x-y.

Then z =X, ., xe; satisfies

/32'11,

=z

flx =lxlilr~ 7

|7 ~7.]=8n,
and we are allowed to apply the above inequality to z. It follows that

IRSx| =[RSy s + RSz [l = |7 [ RSy . + K, (8*n)" [ R n.Sz ||

However, by the estimate for the norm of R4 SR, as an operator on [, we
obtain that

172
= (Zixr) < a1

[R.Syl. <&y (82 n)"

We also have that

r

IRa Sz +IR. Syl

r EHR",SX'

and

, é n:/:- v, ” Rm sy “2 é 82/r" X

I

By substituting these estimates in the inequality above, we get that

| R Sy

o+ 87 x|

|

which proves the assertion. O

R.Sx L= 87! x |, /(87n)" + K (8°n)"[
| + K. (8°n)""|| Sx

Rm Sx ']

X

=(6+K87)(8°n)"|
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In general, an operator from an L.-space to an L,-space; 1 < g <, need not
be g-absolutely summing. The next result gives a condition that ensures this fact.

ProposiTION 3.7. Let 7 be a subset of {1,2,...,n} and 1<r<p<2, and
suppose that W is a linear operator on 1, which satisfies the condition

IR.-Wxll,=C- (|| Wxl|. +lx].),

for some constant C <» and all x €{e)ic,. Then there exists a constant A,,
depending only on r, such that R,W*R, is p'-absolutely summing when it is

considered as an operator from 1. into I} and
7 (RRW*R,: i) A, - C||W|,n""".

Proor. Put W, = R,WR,, take vectors {i}i-, in I2 so that (S, |u [F)=1

n

(coordinatewise) and choose elements {;}/-, in I}, for which

Slhulk=t and (SIwruls)” =3 Wi, ).

Let now {¢;}/-, be a sequence of p-stable independent random variables over
a probability space (Q), X, ) which are normalized in L,(Q, 3, n). Then

= Z(u.—, W.v)
(2 1war)]

-1l
k
). (
<(l(1,
(.

< ac|

h
> AW, v)
i=1

(A

3 @)W duo)|

3 e(@)Wap (o)

h

> ()W,

i=1

A

+

r

3 e @) ) dut)

h

S e@wo| duc)) |

aw) )

(2wer) L1 )

where A, denotes the norm of ¢, in L, (), 3, u). It follows that

IA

+

.-21 ¢ (w)o
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h , 1/p’ h 1/p h 1p
(Siwul)” = ace e (| (Ziwar) | <) (S10r) "))
i=1 i=1 i=1 P

and this completes the proof. O]

+
P

Proor oF THEOREM 3.1. First, note that there is no loss of generality in
assuming that 1 = p =2 since in the case 2 < p = » we can consider the adjoint
operator S* instead of S.

The Case p =1. As we have already mentioned in the introduction to this
section, the case p =1 is actually known, though not exactly in the formulation
of Theorem 3.1. In this case, the matrix (a;;)i;— of S relative to the unit vector
basis of I{ satisfies

Slayl=ish:  1sisn

Thus, by [4] or [13], for each & >0, there exists a subset o, of {1,2,...,n} of
cardinality | o, | = ne®/16| S| such that

,2’“1’./'55; i€o..

j€oe

The.Case 1 <p<2. Fix0<8< 1/e* and 1< r <p so that 2/r'>1/p’, and
let S: 17— I} be a linear operator whose matrix has 0’s on the diagonal.

Let d = d(8,]|S|,)>0, D, <®, Cn,C{1,2,..., n} be given by Proposition
3.6 so that n, =|n,| =[dn], |7|=[8dn] and

IRSx [l = C(ll Sx |, +[lxl),

for all x €[e]ie., where C = D, (8°dn)"".
Since the operator W = R, SR, satisfies the conditions of Proposition 3.7, it

follows that
7, (R.S*R,: = 13)= AC|S]|ny""""
=2A.D, |18 17",
where A, is a constant depending on r only. Thus, by the Pietsch factorization
theorem [24], there exists an operator U: [.— I} with | U}, =1 and a diagonal
operator V:I.— 1., defined by Ve,=Ae,; i €7, and Ve, =0; i€ 1, so that
R.S*R, = UV and

Ip’
(Siak)" =k,

where K =2A,D, ||S||,8¥ """,
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Consider now the set
o={ieT;|\|<2"K}
and note that
lol=|7]/2.

Moreover, since R,SR, = R,V*U*R, and V*e, = A, ; | €7, it follows easily
that, for any x €1, we have that

IR.SR,x|, = || R,V*U*R,x

b
= (max In1) 1 U* R,

= 2K x|,

Hence, if € >0 is given and § is chosen appropriately then || R,SR, |, < e. This
completes the proof since the case p =2 has already been considered in
Theorem 1.6. g

We pass now to the study of operators on [}-spaces whose matrices have
“large” rows rather than “large” diagonal.
We first give an estimate for the rank of such an operator.

ProposiTiON 3.8. Let p>2 and let T: I,— I, be a linear operator such that
| Tell, =1; 1=i=n. Then

rank T = n/|| T}
Proor. If k =rank T than it is well known that the 2-summing norm 7(T)
of T satisfies (cf. {24])
m(T)=|| T|| Vk.

Hence

1/2

Va=(ZI7e)

= 7(T)sup [(Z | x*(¢;) >l/z;x* elr, I|x*H,,él]

=|T||- V&,

which completes the proof. O



Vol. 57, 1987 INVERTIBILITY OF LARGE MATRICES 175

Actually, an operator with “large” rows on [;; p>2, has also a “large”

permutation of the diagonal when it is restricted to some set of unit vectors
which is proportional to n.

ProposITION 3.9.  Foreveryp >2 and M <, there existsac = c(p. M)>0 so
that, whenever T is a linear operator on 1}, of norm || T|| = M for which | Te.ll, = 1;
1 =i = n, then there exist a subset n of {1,2,.... n} and a one-to-one mapping
from m into {1,2,...,n} such that

Inl=cn and lef;,Te|=c,

or all i € m, where {e*}!., denote the unit vectors in [,
n r

Prooe. Put x,=Te; 1=i=n, and observe that, by Grothendieck’s

|(5-

Then a simple interpolation argument shows that

(Sxr) ] = (B1sr)

inequality,

)" Hg Ko\ Tl

2p 1-2/p

=

- |l max ! x; |

I=i=n

’

nl/p :l

P P [

=dn'",
14

max | x;

I=izsn

where d =1/(Kg || T

Y, Put
cr:{l-f_lén; e’ (lrgqxix, I)gd/zlm}

and observe that

“ xomax x| >d(n2)"”

Now split ¢ into mutually disjoint subsets {o;};-, so that

e’?(max|x,»|>=e",‘|x,-|; leo, j=1,2,...,n

1=i=n
Put

n={1=j=n; 0,7}
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and note that, for each j €7, there exists an element 7 (j)€ o; such that
w(j)# w(k), whenever j, k €n and j# k. Finally, observe that

d’nf2 =

P
2 Xo" max x|
=IEn ’7

JEN

-3

jeT

= E HX"jxi ”g

j€n

X" Max | x|
I<i=n

14

=TI

b3

Inlzdn2| TI" O

CoroLLARrY 3.10. For every p =2 and M <, there existsad = d(p, M)>0
such that, whenever T is a linear operator on 1} of norm || T\ =M for which
| Te.|l, = 1; 1 =i = n, then there exists a subset o of {1,2,...,n} of cardinality
|o| = dn so that

2 a;Te;

i€

p
=d(3lar)".
p

j€a

for any choice of scalars {a;};c. .

Proor. For the case p =2, the matrix corresponding to the operator T*T
has 1’s on the diagonal and the proof can be completed by using Corollary 3.2. If,
on the other hand, p >2 then it follows from Proposition 3.9 that T Theicns
where 7' is the corresponding permutation operator, has ‘““large’” diagonal, and
again the proof can be completed by using Corollary 3.2. O

The results obtained above for matrices with ““large” rows acting on [;-spaces
with p >2 are, in general, false in the case of 1 = p <2. Even the rank of such an
operator need not be proportional to n.

ProposiTION 3.11. Let 1 <p <2 and let T: I;— I} be a linear operator such
that || Te;||, =1; 1=i =n. Then

2

rank T = n™?[|| T

Proofr. The argument is identical to that used in order to prove Proposition
38. If k =rank T then, again,
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n 172
n= (317 )
i=1

= m(Dswp | (3 1x @) s v etp Il = 1)

1/2 1/2-1/p’
=|T)- k" a2,
which yields our assertion. [l

The estimate from below for the rank of T given by Proposition 3.11 is
asymptotically sharp, as is shown by the following example. The case p=1is
absolutely trivial; it is easily seen that there are operators on [} with || Te, [, =1;
1=i=n,and rank T =1.

ProposiTION 3.12.  For every 1< p <2, there is a constant M, and, for each
integer n, there exists a linear operator T: 1,— 1, of norm =M, such that
| Te.ll, =1; 1=i=n, but

rank T =[n""].

Essentially speaking, this property is shared by all the orthogonal projections
from I; onto well-complemented Hilbert subspaces of I, having maximal
dimension.

Proor. Fix 1 < p <2 and n. For sake of simplicity of notation, we shall work
with the function space L} instead of [,. By a result from [3], there exists a
constant C, < such that, for each n, the space L contains a subspace H, of
dimension m = [n**] for which d(H,,, I7) = C,. By B. Maurey [22] Theorem 76,
there exists a constant C, <, an element g € L with | g}, = 1, where r satisfies

~ =

k)

1_1
2_p'+

and a linear operator from gH,., considered as a subspace of L3, into L} such
that | S||= C} and
S(gx)=x; x€H,.
By Hoélder’s inequality, we have
lezle=lgl Izl =lzl; z€L;.
On the other hand, if x € H,, then we also have

Ixll =NSH-Nlegxl. = Coligx b,
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ie.

| gx

= x = Chllgx
for all x € H,,. In a similar way, we can show that

gyl =llyl-= Ciligyl,.

for all y € gH,,, considered as a subspace of L3.
Let R be the orthogonal projection from L} onto its subspace gH, and
denote by M, the operator acting as “multiplication” by g. Then

P = M, RM,
defines clearly a projection from L, onto H, and, by the above estimates,
Pzl =llg”" R(g2)ll, = C3| R (g2)

for all z€ L}, ie. |P||=C,. By duality, we conclude that P* is a projection
from L} onto its subspace g’H,,, and, moreover, that P* = M,RM,-'.
Now, observe that

:=Cillgz .= Chlz s

n""2=m =|R ks =n 2| Re [}
=1

=(Cn 2 gRe = (CoYn 2 I P*(ge)l;

1/

since the unit vectors {¢;}/-, have norm equal to n™'*, when considered in L}.

Suppose that

g= Z] g€;-
=

Then (2., 1g;
ity, that

"In)" =|gl. =1 from which it follows, by using Holder’s inequal-

n=2Cly 2 g -] P*(n"e)E

2/r 2/p’

=acy (S1al) " (S 1P eral)

2/p*

=2Cyn - (S 1P ne)l)

Hence
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n=2"Cyy Z [P*(n'"e)E,

which yields that the set
o={1=j=n;|P*n'"e)|, =1/2"""- C1}
has cardinality
lo|=n/2"P(Cy".

The proof can be now easily completed by constructing an operator T: [;— I,
with || Te; ||, =1; 1 =i = n, so that its range is contained in g'H,,, i.e. rank T =
[n?_/p']. D

While Proposition 3.9 is clearly false for | = p <2, in view of Proposition 3.12,
a weaker version still holds.

ProPOSITION 3.13. For every 1=p <2, M<x and ¢ >0, there exists a
d = d(p, M, ¢) >0 so that, whenever T is a linear operator on I, of norm | T|| = M.,
for which

g
i=1

then there exist a subset n of {1,2, ..., n} and a one-to-one mapping m from 7 into
{1,2,..., n} so that

1/
de Zcn'?,
P

In|zdn and |e},Tel|=d,

forallien,

Proor. The condition imposed above on the vectors x;, = Te;; 1=i=n,

implies that
n 172
|(£1r)
i=1

On the other hand, it is entirely trivial that

(Z1xr) "t =(S1xl) "= mnte

14 i=
Therefore, by an interpolation argument as in the proof of Proposition 3.9, we

conclude that
n 1/p
(Z1%r)

n 172
Cn”P é "(2 Ixi ]2)
i=1 i=1

‘ =cn'”
P

pi2

1-p/2

=
P

max | x, | ,
1=i=n

P p
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which yields that

2/(2— 2
= c /{ P)/Mp/( p)'
4

max | x; |

1Zis=n

The rest of the proof goes exactly as in that of Proposition 3.9. O

4. Applications to the geometry of Banach spaces

The results proved in the previous section will be used in the present one in
order to solve some problems concerning the existence of *‘well” complemented
copes of [;-spaces in L, which were raised by W. B. Johnson and G. Schechtman
[13]. The main part of this section is devoted to a study of those subspaces of L,
whose euclidean distance (i.e., the distance to a Hilbert space of the same
dimension) is maximal.

We discuss first the isometric version. It is well-known that the euclidean
distance of an [}-space satisfies

dp =d(5, 1) =n""""

for any n and 1 = p = . Less trivial is the fact that, for a fixed n and 1 = p =,
[7 has the largest euclidean distance among all the subspaces of L, of dimension
n. For p=1 or p =, this assertion is part of a considerably more general
theorem of F. John (see e.g. [10]) which states that any n-dimensional Banach
space has euclidean distance =n'?. In the case 1< p#2, the fact that the
euclidean distance of any n-dimensional subspace X of L, satisfies

dx = d(X, 1)< n""7",

was proved by D. R. Lewis [19].

This maximality property of the euclidean distance of I,-spaces raises the
question whether these spaces are the only subspaces of L, which have a
maximal euclidean distance. For p = 1, the problem was settled in the positive by
T. Figiel and W. B. Johnson [9]. We prove below a similar assertion for
1=p <2. The case p >2 is still open.

THeEOREM 4.1. Fix n and 1 <p <2. Then any n-dimensional subspace X of
L, whose euclidean distance is maximal, i.e.

— W/p—-1j2
dx =n"?P7",

is necessarily isometric to I}.
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We first need a result which, in particular, gives a simple alternative proof to
the aforementioned theorem of D. R. Lewis in the case 1 <p <2.

PropPoSITION 4.2. Fix n and 1<p <2, and let (0,3, u) be a probability
space. The euclidean distance dx of an arbitrary n-dimensional subspace X of
L,(Q,3, u) satisfies the estimate

de S| TN TH =T =UE P =07
where
Fx(w)=sup{|f(0)]; fEX, [fl, =1}
and T: X — L(Q, S, ) is the linear operator defined by
Tf=f F'; feX

PrOOF. Observe that, for any f € X with | f]l, =1, we have that

ITFE= [ 1) PR (@) do)
=L [f(0)? | f(@) Fx (@) Pdp(w)

= [ 1@ldut)
ie.
ITI=1.

On the other hand, by using Hélder’s inequality, it follows that, for any f € X,
we also have

”f“ﬁzL |(TF) (@) PFx (@) " du(w) < | TfIE - | Fx 2",

1T I=lFx "

Since, by definition, dx <||T|-| T™'|| it remains to show that || Fx ||, = n"".

By using a well-known characterization of Hilbert spaces, due to S. Kwapien
(18], together with a result of N. Tomczak-Jaegermann [30], we get the more
trivial estimate

dx = T(zg)(X) . C(Zs)(X) = Knllp—l/Z’
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for some constant K <, independent of p and n, where T¥'(X) and C¥(X)
denote the gaussian type 2, respectively cotype 2, constants of X.

Another argument of an elementary nature which proves the same estimate
for the euclidean distance as above can be found in [28).

It follows that there exists a sequence {f,}/-, of vectors in X so that

n 82 n 12
(E}a,- 2) él éKn”""”-(Zfa,F) ,
o1 P bt

for any choice of scalars {a;}/-,. Since any f€ X with ||f[|, =1 can be rep-
resented as a linear combination f = X[, b,f,, for a suitable choice of {b;}.,, we
conclude that

n

2 af,

i=1

f@)= 3 [b]-1f.()
=(Sinr) (Sinwr)”

i=

=(Sirr)".

for all w € Q. Hence, also the maximal function Fy satisfies

F@=(S i)

for all w €1}, and thus

Fix now an integer k and\let Q™ denote the product space @ x QX --- X (k
times) endowed with the corresponding o-field 3’ and product measure pu.
Let X* be the subspace of L, (Q*, %", u*’) obtained by the k-fold tensoriza-

tion of X, i.e.

de =K\V2n'"
14

XV=XQXQ - @X

with dim X® = n*. The maximal function Fx®(w:, @,..., @) of X% clearly
satisfies

Fyorw,, wa, ..., @)
zZsup{| gi(@)| - | gxw2)| - - g (@i)]; & € X, lgll, =1, 1=j=k}
= Fx (wl)‘ Fx ((Dz) -+ Fx (wk ),
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for all (@, @z, ..., 0, )€ QY. Thus, by the above estimate for the norm of the
maximal function, we get that

K\?2 n*r = ”Fxm”,, = “Fx ”:’

I Fxll, = (K V2)"™ - n'.
By letting k — =, we easily conclude that
[ Fxll, = n™,
thus completing the proof. 0

Proor oF THEOREM 4.1. Suppose now that X is a n-dimensional subspace of
L,(Q,%, u) whose euclidean distance satisfies

de=n'"""",
Then, by Proposition 4.2, we get that
IFxlly =n""
and, furthermore, that
IT)=1.

Hence, by a simple compactness argument, we conclude the existence of a
function g € X with ||g|l, =1 such that

1Tk = [ 8@l R @y *du()=1.

Since |g(w)| = Fx(w), for all @ €Q, it follows that

1= L |8(w)/Fx(w)|2.Fx(w)r’dp,(w)éL | g(w)/ Fx (@) - Fx(wYdu(w)=1,
ie.

|g(w)| = Fx(w)

for a.e. w in the support A of g
We shall prove in the sequel that, for any f € X, the restriction f - y, of fto A
belongs to the one-dimensional subspace [g] of L, ({2, 3, ) generated by g. This
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would imply that
X =(g]® X,

where
X ={f€X;f(w)=0,forae. w €A}
We also have that dim X, = n —1 and that
Fx(o)=sup{A [g(0)[+(1-A")"[f(0);0=A =1, fE X, lIfl, =1}
=(|g(0)F + Fx(w))",

for a.e. w €1, which clearly yields that

[Fxll, = (n = 1)".

Furthermore, it is easily verified that

dx =1+ 3P
from where it follows that

dx,=(n—1)""7""

Consequently, X, has the same properties as X if we replace n by n—1.
Repeating the procedure for n times, we conclude that X is isometric to [}.

In order to prove that fy, €[g], for any f€ X, we fix fE X and ¢ >0, and
note that

lg@)+if(@)| =g +ifl,  Fx(w), o€

Thus, by restricting this inequality to @ € A and taking into account the fact that
lgl, =1, we get that

s(e) ()l g f (|

A

lg(w')—’— tf(wt’)lp - ] &(w’)lp d[.L(w’)

+ ¢! .L~A lf(w’)|”du(w'))] lg(w)l,

for all @ € A (use the fact that on this set Fx =|g]). Since p > 1 we obtain, by
letting t >0, t >0, that

plg(@) '(sgn g(w))f(w)=p|g(w)l L |g(0")]""'(sgn g (o) f(w)dp (),

i.e.
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f(w)/g(w)éfA [g(0)] (f(0)/g(w))du(w"),

for all ® € A. However, the same inequality holds when f is replaced by — f, i.e.
fo)e@)z | 8@ (w)g@dn); oA

This means that

fir =8| 18@)P (Vg0 Ndu(@)E 8],
thus completing the proof. |

We pass now to the study of the isomorphic case when we consider
n-dimensional subspaces X of L, whose euclidean distance satisfies

dx = Cnn/p—l/ZJ

for some constant ¢ >0, independent of n. Of course, one cannot expect to
prove in this case that X is well isomorphic to !} but just that X contains a
subspace Y of dimension k proportional to n which is well isomorphic to /.

For p =1, this fact was proved in [13] (see also [4]) while for 1 < p <2t is still
an open problem. In the case p>2, the assertion is false: there exist
n-dimensional subspaces of L,; p >2, which contain copies of [; only for
m = Cn** for some constant C <. Such examples are provided by the
so-called random subspaces, on which the L,- and L,-norm are equivalent (cf.
[9)).

The situation is different if we consider subspaces of L,, 1 < p <%, of maximal
euclidean distance (in the isomorphic sense) which are also well-complemented
in L,. W. B. Johnson and G. Schechtman [13] proved that such a subspace X of
L, of dim X = n should contain, for each &£ >0, a well-complemented subspace
X, of k =dim X, = n'™* which is well isomorphic to ;. They also raised the
question whether this assertion is true with n'~* being replaced by dn, for some
d > 0. The following result shows that their problem has a positive solution.

THEOREM 4.3. For every 1 <p <, M <® and c >0, there exists a constant
C = C(p, M, c)< so that, whenever X is a n-dimensional subspace of L, for
which

(i) dx=cn""?

and



186 J. BOURGAIN AND L. TZAFRIRI Isr. J. Math.

(ii) there is a projection P of norm |P||=M from L, onto X,
then there exists a subspace Y of X and a linear projection R from L, onto Y such
that

k=dimY=n/C, d(Y,I))=C and |R|=C

The deduction of Theorem 4.3 from Corollary 3.2 is basically known and in
the easier case p =1 can be found in [13]. We give here all the details for the
sake of completeness. The proof requires the following result, an extension of
which will be discussed in Section 7.

PropOSITION 4.4, For every 1 <p <% and K>, there is a D = D(p,K)
such that, whenever {g}., and {h}/., are sequences of functions in L,,
respectively L., for which

) IS5 agl, = KElal)”, for all {a)-.

(i) 155 bl = K(E2mi B, P)™ for all {bY-, and

(iti) (g, h)=1, forall 1=i=n,
then there exist a subset o of {1,2,...,n} with |a|= n/D and a projection R from
L, onto its subspace [g]ic. so that |R||= D and

S ag] =(S1at)"

i€a i€o

D

for any choice of {a.}.c.. In other words, the sequence {g}.c. is KD-equivalent to
the unit vector basis of Ii' and its linear span is D-complemented in L,.

Proor. Let {&}-, and {e*};_, denote, as usual, the unit vector basis of I},
respectively I, and consider the operator T: I;— [}, defined by

Te,~=2(g,~,h,-)e,; I=i=n
i=1

It is easily checked that

(Tx, )= K|, Nyl

for any choice of x €1} and y €1}, i.e. | T|=K’. Since, by (iii), e*Te, =
(g, h)=1, for alt 1=i=n, we can apply Corollary 3.2 and conclude the
existence of a d = d(K) and of a subset o of {1,2,...,n} such that |o|= dn,
R.TR, restricted to R.I; is invertible and its inverse satisfies

(R, TR,)'|| < 2.

Thus, by (i) and (ii), it follows that, for any g €[g]ie, of the form g =2, ag;,
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we have

Klgh=sw {3 agh) T lor =1

j€o

(Shemr)”
l RUT( 2 a,e,-)

=14

SPIINE

zlgll, 12K,

P

i.e. {g}ic. is 2K -equivalent to the unit vector basis of I)/' and it remains to show
that [g]ic. is well complemented in L,. To this end, define the operator
Q:L,—[g])ic., by setting

of = 2 (fh)g; feL,.

j€o

Then, by (i) and linearization, as above, we obtain that

lofl, =k (S limP) “=KUfls  feL,
i.e.
loll=k>.

On the other hand, by using twice the inequalities above, we conclude that, for
any element g =Z,c, ag in [g]ica,

10gl= (3 e ) /2K =gl 14k,

which means that Q, restricted to [g lic., is an invertible operator whose inverse
satisfies

[(Qpere) ' | = 4K
It follows that
R =(Qyg.) - Q

is a linear projection from L, onto its subspace [g ]ic, withnorm |R||=4K*. O
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PROOF OF THEOREM 4.3. In view of the fact that X is well complemented in
L,, the statement of the theorem is self-dual and, therefore, there is no loss of
generality in assuming that 1< p <2. Suppose also that L, = L,(Q,3, u), for
some probability space (Q,2, u).

By the result of S. Kwapien [18] which has already been mentioned above and
condition (i), there exists a constant C,, depending only on ¢, so that

n'" " = G TE(X) = G TAX),

where T,(X) denotes the usual type 2 constant of X (recall that T¥(X) stands
for the gaussian type 2 constant of X). But, by N. Tomczak-Jaegermann [30], the
type 2 constant of a n-dimensional space can be computed with only n vectors,
up to a universal constant. This means that there are a d = d(c)> 0 and vectors
{x;}/-1 in X such that

(i | x; ‘2>”2

i=1

n 1/2
= (S IxE)
D i=1

Put y, = x/||x:, ; 1 =i =n, and observe that
0. pl2
dPn'e? (2 % Hi)
i=1
N 2 2 pi2
éfn (lei(w)lp'”xi "p_p'ly.'((l))l_’)) dy,(w)

[ (Zm@P k)" (ma ) e

I=isn
By using Holder’s inequality with r =2/p and r' =2/(2— p), we get that

d¥e .yt <l max |yi)

I=i=n

4

Let {n;};-: be a partition of Q into mutually disjoint subsets such that

max | yi(0)| =y (w)],

1=isn

for w€m;; 1=j=n. Then

n t/p
d¥e P . qir < (’Z‘ ” in"iHZ) >

and a simple probabilistic argument shows the existence of a subset 7 of
{1,2,..., n} of cardinality |7|= d,n such that
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[ n@Prdwzd; e

where d, = d*'* P2
Consider now the functions

7=y " (sgn y)x»E Ly,
and put u; = P*(z;); j € . Then

(yi ;) =y, 2) =J ij(w)l”du(w)é d,,

for all j € 7, and also

|50

for any choice of {b;};c..

We would like now to apply Proposition 4.4 to the vectors {y;};e, and {y;};e.
which, essentially speaking, satisfy the conditions (ii) and (iii) there. The problem
is, however, that {y;};<. need not satisfy (i) and, therefore, should be replaced by
a different system of vectors. To this end, take a so that 4a' ™% - KoM = d, and,
for each j € r, put

5 ={octlu@l>a(Zluwr) |,

i€r

em(znr)”

v =uyx; and w,=uy —uv.
Then, for j € 7, we have
(P(yxs), u) = (¥, v) = dy = (y;, W)

However, by Holder’s inequality,

‘(;I)’f'p)”p p'
(Siwr)”

(Simr)”

i€T

; '(yh wj)l =

v

=|r|-

p'

On the other hand,

12-1

14
Wl =luf wpPsalul (Sluf) 5 e

from which it follows that
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(Zrwr) " sa (S rur)”

1€ ter
Thus, by Grothendieck’s inequality and the choice of a, we get that

()1,

p

2 [y, wl= a7 7|0

ji€7

=a'" KsM|1|
=d,|7|/4.
A simple probabilistic argument shows that there exists a subset 7, of 7 of
cardinality | 7,|Z|7]/2Z= d,n/2 for which
Ky, wh=di2, jEm,
ie.
(P(yixs;)s w;) = dif2; jET.

In order to complete the proof, we now apply Proposition 4.4 to the functions
=P(yxs)EX andby h; = u; (g, u)EL,;jE ™. O

Another problem raised in [13] is whether any copy of [;in L,; 1 <p <o,
contains in turn a copy of [, which is well complemented in L, with k
proportional to n. The cases p =2 and p = = are entirely trivial while the case
p =1 was solved in [13] and [5]. We solve here the case 1 < p# 2, again in the
positive.

THEOREM 4.5. For every 1<p <w and M <, there is a constant A =
A(p, M) < such that, whenever {f}\-, is a sequence of functions in L, which
satisfies

(Z1ar) =] at] zm(S1ar)”.

for all {a;}}-,, then there exist a subset o of {1,2,..., n} of cardinality |c|=Zn/A
and a projection R from L, onto [f);c, with |R| = A.

Proof. Since both ||[(Z-, | £, )" ||, and ||(S= |f: )|, are between M'n"?
and M - n"? we conclude, by a simple interpolation argument, that

p 2+p)i2-p
>n / /M( it |’

max | f; |

1=isn
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provided, of course, that p# 2. Then, exactly as in the proof of the previous
result, we find a ¢ = ¢(p, M) >0, a subset 7 of {1,2,..., n} and mutually disjoint
subsets {0 }ie. of Q so that |7|=cn and

[ 1@Pawze  iex

The proof can be completed now by applying Proposition 4.4 to the functions
g = fillnlf(w)du(w)and b =[f;[""'(sgnf)) xq;i ET. O

REMARK. Proposition 4.4 can be reformulated as a factorization theorem
which improves a recent result of T. Figiel, W. B. Johnson and G. Schechtman
[11]. More precisely, it follows from Proposition 4.4 and some of the arguments
used to prove Theorem 4.3 that, for every 1 < p < and M <, there exists a
constant C = C(p, M) < such that, whenever T:l,— L, is an operator of
norm = M satisfying the condition

ﬂ) 12

) (317
then there exists an integer k = n/C and an operator R: L, — [ with |R||=C
such that the identity operator I on I factors through T as

Up

)

=n
4

I=RTJ,

where J is the formal identity map from [} onto a subspace of I} generated by a
certain set of k unit vectors.

This factorization result is an immediate consequence of Proposition 4.4 and
the fact that (*) implies that

=cn'
14

max | Te; |

N b
1=i=n

for some constant ¢ = ¢(p, M) > 0, which further yields the existence of a subset
oof{1,2,...,n} with |o| =Z n/C and of mutually disjoint subsets {A,};c. so that
”XA.-(TC-')HP Zc;i€o.

In the aforementioned paper {11}, the authors prove a weaker factorization
theorem asserting that, under the same assumptions, there are a k, as above, and
operators J, and R, with |R.||<C; e €{—1, +1}* so that

I =I R.Tl.ds.
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5. “Unbounded” operators on [;-spaces: | =r =

The invertibility results discussed in Sections 1 and 3 apply to “bounded”
operators on [;-spaces; 1 = p =, in the sense that at least one of the constants
appearing in the various statements (measuring either the cardinality of the set
of vectors onto which the operator is restricted or the norm of the inverse)
depends on the norm of the given operator.

In the present section, we discuss some unexpected invertibility theorems. The
main feature of these results is that, given a n X n matrix with ’s on the diagonal
which acts as a “bounded” operator on some [;-space; 1 = p =, one can find,
for a whole interval of values r, a submatrix of rank proportional to n which is
“well” invertible on I7. Furthermore, the constants appearing in the statements
depend only on the norm of the matrix as an operator on the original [}-space
and not on the value of r under consideration.

We now state our main result.

THEOREM 5.1. For every 1=p = and M <, there exists a constant ¢ =
c(p, M)>0 such that, whenever T is a linear operator of I, of norm | T}, =M
whose matrix relative to the unit vector basis has 1’s on the diagonal, then, for any
1=r=pif2<p=ow, or forany 1=r=2 if 1=p =2, there is a subset o of
{1,2,...,n} such that |o|= cn and

2 a,’Tei

i€o

Yr
§c<2|a.~ '> s
r i€o

for all {a;}ic..

Moreover, for every ¢ >0 (and p and M, as above), there exists a constant
d = d(p, M, £)>0 such that, for any T as above, one can choose the subset o of
{1,2,..., n} with the property that R, TR, restricted to R, is invertible and its
inverse satisfies

IR, TR, )|, <1+,
forall2=r=pif2<p=xorp=r=2if1=p=2

The proof of Theorem 5.1 is based on the following generalization of a result
of J. Elton [8] (see also A. Pajor [23] for the extension to the complex case).

THEOREM 5.2. For every M <o and 0<p <1, there is a constant c =
c(M, p)>0 such that, whenever {x.}i., is a sequence of vectors in an arbitrary
Banach space X which satisfies

W) flI=-iex|de zn
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and

(i) [Zicaxll=M-|nln""
for every subset of {1,2,. .., n}, then there exists a subset v of {1,2, ..., n} so that
lo|=cn and

> ax,

1€o

zc Y la

iEa

k)

for any choice of {a;}ic..

Proo¥. The difference between Theorem 5.2 and the aforementioned result
of J. Elton is that, in the statement above, the vectors {x;}/_, are supposed to
satisfy condition (ii) instead of the weaker assumption of uniform boundedness.
In order to overcome this difficulty, we shall replace the vectors {x}/_, by
another sequence {}i-, of uniformly bounded functions on the closed unit ball
of the dual X* of X.

Since the statement of Theorem 5.2 involves n vectors there is no loss of
generality in assuming that the underlying space X is n-dimensional and, thus,
that the closed unit ball K of X* is norm compact.

For each x € X and f € K, define
x(f) = f(x),

and note that £ is an element in the space C(K) of all the continuous functions
on K so that

£(H)]=1lx].

1 £1. = sup
fek
Take now A = (4M)"" and, for any x € X, define the A -truncation ¥ € C(K) of

£ in the following way:

(f) i [R(H=A,
i(f)= { A if £(f)> A, fEK.
~A if £(f)< — A,

Let us also introduce the notation: for f € K, set
n(H={1=i=nL()>A}, n(f)={l=i=n; ()< - A}
and
(=" U (f).

Then, for any choice of f € K and signs & = =1, we have
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,.;&fi(f)=gsiif(f)+ > aE(N-A)+ T aE )+ A),

ien’(f) ien ()

which yields that

% (H)l.

Sein)|+ T

En(f)

2 ek (f) i =

On the other hand, in view of condition (i),

in

ien(f)

Aln'Hl= 2 &)= =Ml (HlFn',

ien’(f)

ie.

In* ()| = (MIAY™*n
and, similarly,

[n7 ()| =(M/A)"""n.

By using again condition (ii), we get that

2 %

ien(f)
=M(n"(OF +In (AP In""
= (2M1/(1-p)/A P/(l—ﬂ))n'

2

ien (f)

+

R

ien(f)

However, the choice of A made above ensures that 2M""?/ A2 =1 je
that

DIREAHIETYA
ien(f)

Consequently,

n n
= Ep&' :§$‘§5 Epi

i=1 g i=t

n
2 €iX;
<

which, by averaging and (i), yields that

J' ii Epfi d£ ;; n/2.
i=1 o

The advantage of working with the functions {%}/_; in C(K) instead of the
original vectors {x;}/_, consists of the fact that the former are uniformly bounded
by A. Therefore, we can apply the main result of J. Elton [8] in the form stated in

+n/2

x




Vol. 57, 1987 INVERTIBILITY OF LARGE MATRICES 195

the Remark on p. 119 by which there exist a constant d >0, depending only on
A and, thus, on M and p, a subset o of {1,2,..., n} of cardinality | | = dn and
reals u and v with v —u = d such that if we set

U={feEK;%(f)=u} and V,={feK;i(fizv}; 1=i=n,

then the family (U, V))ic. is Boolean independent. This means that, whenever
o, and o, are two mutually disjoint subsets of o, then

(m U)m(m V)£@.

In particular, we get that U, and V, are non-void, for all i € o, which implies that
u=—A and v = A. Thus, for each i € o, we have that

UcU-={feK;%(f)=u} and V,CV, ={f€K;%(f)=v}.

Indeed, if f € U, for some i €, and e.g. X, (f)< A then £ () =X ()= u, ie.
fe U. If, on the other hand, f € U, and % (f)= A then u = A which implies
that v > A and contradiction.

The inclusion above shows that also the family (U, V,).c, is Boolean
independent. The proof can be now completed by using a standard argument.
Let {a:}ic. be an arbitrary sequence of reals, put

o={i€ag;a,>0} and o,=0~o0a,
and let f, be an element in the intersection

(ﬂ tl)n(ﬂ v)

i€az i€aoy

Then

2 ax;

ico

= 2 ax (fo)

i€o

= 2 af(f)+ 2 adi(f)

€0 i€o
203 lal-u Y lal.
i€a i€oz

On the other hand, by replacing a; with — a;, for all | € g, we also get that

> ax, szz |ai|—u_2 la:].

i€a i€oz i€ay
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Hence, by addition, we finally obtain that

> ax;

i€o

z(-u)- Slalzd Xlal,

(15124

and this completes the proof in the real case. The solution in the real case also
implies that, whenever {x;}i_; are vectors in an arbitrary complex Banach space,
then

E a; x;

i€a

zd D |al

i€a

for any real {a;} and some d’>0. The proof of the complex case can then be
completed by using A. Pajor [23] Theorem 3.16. O

Before presenting the proof of Theorem 5.1, we need one more result which is
of interest in itself.

ProposITION 5.3.  For every ¢ >0, 1<r=2 and every sequence {x;}}-, of
vectors in 1 which satisfies

|3, as 2 Bla

for all {a;};-\, there exists a subset T of {1,2,...,n} such that |7|=n/2 and

i/r
> ax 25*""-c(2|a,- l) ,
r jEer

JjET

for any choice of {a;};e..

Proor. We shall use again an exhaustion argument. Fix ¢, r and the
sequence {x;};_, in [}, and suppose that the assertion of Proposition 5.3 is false.
Then we can construct subsets

T IDT2 D DT

with |7, |= n/2 and vectors y, =3,c,. b;x; ; 1 =i =m, so that

2 ’ bi,i
J€Tn

r

i=m,

A

, < 5-—!/7.' - c, 1

217 ”yl
and if we set
7m+,={l§j§n;2]bi,,-}'<l}
i=1

then |7,...| < n/2. This construction yields that m = n/2.
Let now {¢:}%; be a sequence of r-stable independent random variables over a



Vol. 57, 1987 INVERTIBILITY OF LARGE MATRICES 197

probability space ({2, 3, ) which are normalized in L,(Q, 3, p). Since the norm
in L,-spaces is additive on the positive cone we get that

m r
5—1/r le/r > <Z “ y; :)

3 (CEUN
(Sl
|l

n" Jﬂ "]_; (g @i (w)bu) X
=Zcn " i

i=1Ja

—tr 2 (2 l b
However, the above construction yields that

i
i=1

for all 1 =j = n, which implies that

v

n'”r'

> (w)y,.\ du(w)“l

I

 du(w)

> <p..<w)bf.,~’ dp(w)

)

iJ =

n

2l/r' . S—I/r ml/r ~> n—-l/r'

Ms

| by

1

Ll

j=1i
This contradicts, as easily checked, the fact that m = n/2. ]

Proor ofF THEOREM 5.1. Fix 1=p=o and M <, and let T be a linear
operator on [ of norm | T||, = M whose matrix has 1's on the diagonal. Put

x; =V2Te; 1=i=n, and note that
2|(Ser) ] /vazn
1

[Ze -]z
2>mzet(|x,~)>=vz.

de

since, for each 1 =j =

e* (lex

Consequently, condition (i) of Theorem 5.2 holds in X = I{. Moreover, if nisan
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arbitrary subset of {1,2,..., n} then

2u| =3 x

i€n i€En

R = MV ],

P

i.e., also condition (ii) of Theorem 5.2 holds with p =1/p and M replaced by
M V2. Thus, by Theorem 5.2 with the notation ¢, = ¢(M V2, 1/p), one can find
a subset o, of {1,2,...,n} so that |o,|=c,n and

2 axij| =c 2 Iail,

i€, 1 =0

for any choice of {a};c,,. This already completes the proof in the case r =1. In
the case 1 <r =2, we complete the proof by using Proposition 5.3. Finally, we
consider the cases when 2<r=p or when 1=p<2 and p<r=2. Put
S=T-1I and apply Theorem 3.1. It follows that there exist a constant
c:=¢(p,M,£)>0 and a subset o, of {1,2,..., n} such that |o;|= c,n and

| RoySR, |, < £/4Kos.

>

Hence, by Corollary 3.4, there exists a subset o of o, of cardinality |o|= |0,
can/2 so that | R,SR, ||, < &, for all r between p and 2, including 2. Consequently,
for each such r, R, TR, restricted to R,!” is invertible and its inverse satisfies

R, TR, )|, <1+e.
In particular, we also get that
1r
(2 | a; ) <(1+¢) 2 aTel ,

forall{a;};c, and r, as above. O

REMARK. As we have pointed out in the introduction, if p =« then ¢ can be
chosen so that [|[(R,TR,)™"|, <1+e¢, for all 1=r=o. The same is true, of
course, if r =1, by duality.

We present now two examples which show that the range of restricted
invertibility given by Theorem 5.1 in both cases: rectangular and square, is best
possible.

ExampLE 5.4. For each p =2, there exists a sequence {E,,}-: of linear
operators on [, such that

@ sup, [|Ep [l /n"* <o,

(ii) the entries of the matrix associated to E,, have absolute value equal to 1,
for all n,
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(iii) for any r > p and any subset o, of {1,2, ..., n} with sup, n/|a, | <, there
=1 but

exists a  vector X, E[e)ies, so  that  lim,_.|x.|
lim,..[|(I+nr7""E,,)x, |, =0.

Before presenting the construction, let us point out some of the features of the
operators A,, =I+n"""E,,; n=12,....

(1) sup. || A,. |, < and the entries of the matrix associated to A,,,, which are
on the diagonal, tend uniformly to 1, as n— . Furthermore, by (iii), the
restriction of A,, to any set of unit vectors of cardinality proportional to n is not
invertible in I7, for r > p, i.e. Theorem 5.1 is false for 2=p <r.

(2) The adjoint A%, of A,, has the property that R,A%.R, restricted to R,{;
is not “well” invertible in [}, for any 1=r<p’ and any o C{1,2,...,n} of
cardinality proportional to n. Indeed, otherwise R,A,,R, restricted to R,I;
would be “well” invertible in I} with r' > p, contrary to (iii). This means that, in
the range 1=r<p =2, Theorem 5.1 cannot be improved so as to yield
restricted square invertibility.

(3) Corollary 3.4 is false for 2=<p <r since if R,A,,R, were a “well”
bounded operator on [}, for some subset n of {1,2,...,n} of cardinality
proportional to n, then, by Corollary 3.2, it would also be “well” invertible in [
when further restricted to a subset o of n of “large” cardinality. This again
contradicts (iii).

In order to describe our construction, fix n and let E, (@) be a n X n matrix
whose entries (g;; (w))i;-, are symmetric independent random variables on some
probability space (1,2, w), each of which taking only the values +1 and —1.
Let (g,;(w))-: be a matrix of symmetric independent Gaussian random
variables over an independent copy (0,3, n") of (0,3, ). Fix now p =2 and
note that the norm || E, (@)|, of E.(w), when considered as an operator on [},
satisfies

[ 1E. @)lduw)

S e @)( ] 18, @)lduo))e®e

ij=1

e |

:\/ﬁ—/zj'

=v7r—/2j

pd#(w)

n

2 £ (w)] g (w))e Qe

ij=1

pdﬂ’(w’)dﬁ(w)

2 si@)e®e) du'(w).
L= 14
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Hence, by Chevet’s inequality [7] (see also [12]), we get that

| 1B @)du(@)=
Q
Define
A (@)=T+n""E, () wEQ,

and observe that
L | Apn (@) hdu(w) = 5.

(Note that the same argument involving the use of Chevet’s inequality actually
yields that

[ 14w @)ldu() =5,

forany p'=q=p)
In order to prove condition (iii), we need the following lemma.

LEMMA 5.5. There exists a constant D < « such that, for any n and any matrix
(8;(@))i;=1 of symmetric independent random variables on a probability space
(0,3, u) which take only the values +1 and —1, we have

n
J. =j max{z max
Q i=1 ‘ik’fj"

:

= Dn**(log n)"”.

Z gi(@)eu(w)| ;0 C{l,2,..., n}} du(w)

JEo

PrOOF. Let & be the family of all the maps ¢ which take the set {1,2,..., n}
into itself in such a manner that ¢ (i) # i, for all | =i = n. Let U be the family of
all the triplets of the form u =(a,¢,{6}.)), which range over all oC
{1,2,...,n}, e EF and 6, = +1; 1 =i = n, and observe that | U |=2"-n"-2" =
(4n)". Put m =[log| U |]+ 1 and note that

i 2 9i£ji(“’)£w(:‘>(w)’ dp(0)

i=1 jEuo

Jngf max
a ¥

(2],

=|U" max (J’“ i 2 06 (@) 0(@)

i=1 j€Euv

A

i=l j€o

")

- .
= e max J.(u),
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where, for any fixed u = (0, ¢, {6,}/-)E U,

o]

Fix now u = (o, ¢,{6,}}-)) € U and verify that, for this particular choice of ¢,

n

> b (@& (w)

i=1jEo

" du(w))wm.

there exists a particular {m }i-, of {1,2, ..., n} into [ mutually disjoint subsets so
that ! = d log n, for some constant d <<« independent of n or ¢, and

@) Iml=n/2

(i) em)Nn =3,
for all 1=k =1 Thus

In general, for a fixed j € 0, ¢, () and ¢,,,(w) need not be independent since

> D 06 (0)8 (@)

IEni€o

" du (w)> ”m .

¢ (i) might coincide with h. However, for each fixed 1 = k = [, we conclude, by
(i1), that the families (& (®))jcoicn and (€..0(®))jesicn are independent.
Therefore, by Khintchine’s inequality in L, (Q,2, u), we have that

{
J. )= B, 2 (Il 1o )* = Bun/(V2-1).
k=1
This completes the proof, in view of the fact that Khintchine’s constant B,, is,

as well known, =V m. O

We return now to Example 5.4. By Lemma 5.5 and the estimate in mean for
the norm of A,,(w), there exists a point @, €£) such that

|| AP.n (wn)HP é 10

and

3

max | D, £ (@,)& (w,) | =2Dn*(log n)'?,

I=k=n| /Sy

=
kAl

for any choice of o C{1,2,...,n}.
Now, for each n, fix o, C{1,2,...,n} so that

K =sup n/|o,| <>
and choose an integer 1 =i, = n which ensures that

> & (@ )Ex (@) [ =2Dn'? - (log n)"”,

j€an
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for all 1=k =n, k#i,. Let r > p and consider the vectors

1/p’
n
X, =e —mj;" g (w.)e n=12,...,
i%in

in

whose norm satisfies
1= x, H, =1+n"/(|o. |- 1D =1,

as n— . On the other hand, we have that

1 Ap (),

=l Au (@)x [+ 0" max et A ()%,
k#in

and it is easily verified that
e ;:Ap.m ((t),, )X,, =€ inwin(wﬂ )/l’l e’

and, for 1=k =n, k#i,,

letApn (0 )x, = n")(|on | =)+ n""" |etE.(w.)x. |

=n"" /(|| -1)+n7""+ 2 Ejin (00 )€1 (@)

J€on

2 /(|crnf—1)

= nwp'/ua_" | — 1)+ novP (ZDHHZ(]Og n)1/2 + 1)/(] Oy 1 - 1).

Thus, for n sufficiently large, we obtain that
I Apn (@n)x. |l = 0"l @ | = 1)+ BDn"""*(log n)"*)/(1a. | - 1)
g K(z/ﬂ]/p-l/r +6D(10gn)l/2/n]/r’A1/2)
— 0,
as n — . This completes the argument. g
EXAMPLE 5.6. For each p >2, there exists a sequence {G,,.}.-: of linear
operators on [, so that
(@) sup. Gyl <,
(i) the entries of the matrix associated to G,, tend to 0, as n —x,

(iii) for any 1 =r <2 and any subset a, of {1,2,..., n} with sup,n/|a.| <,
we have

= 00,

r

lim | R.GoR..,
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We can draw the following conclusions from the existence of the above
sequence {G,.}.-1:

(1) The operators B,, =1+ G,,; n =1,2,... have diagonal tending to 1, as
n—o, and sup, | B,.|l, <. However, the operator R, B,.R,, is not well
invertible, for any choice of 1 = r <2 and o, of cardinality proportional to n, i.e.,
Theorem 5.1 cannot be improved so as to yield restricted square invertibility for
1=r <2 (where we have only restricted rectangular invertibility, by Theorem
5.1). Indeed, if

Sup ” (R ('nBPv"R G’n)7|

|, <e,

for some 1 =r <2 and {o,},-, satisfying sup, n/ <, then, by Corollary 3.2
applied to the operators (R ,,B,.R,.)'; n =1,2,..., one could find subsets 7, of
g, with sup, |a,|/|7.| <® so that

g,

sup ||R.,B,.R. [l <,
contrary to (iii).

(2) Corollary 3.4 is false, for p>2 and 1 =r <2, and also for 1 = p <2 and
r>2.

We pass now to the construction. Fix an integer n and p >2, take k =[n' "]
and suppose, for the sake of simplicity, that k divides n. Put m = n/k and let
{n:}{~, be a partition of {1,2,..., n} into mutually disjoint subsets, each of which
has cardinality equal to k. Let (&,; (w)), -, be a matrix of symmetric indepenent
random variables on a probability space (€1, 3, ), each of which takes only the
values +1 and —1, and define

Gpn(w)=n"" 2 2 & (w) (( 2 e,,)® ei) .

== KEm

Then, by passing to independent Gaussian random variables, as in Example 5.4,
and, by using Chevet’s inequality, we get that

[ 16 @)l (@) = VAT K7 e e 4 ),
which, in view of the condition imposed on k, implies that

[ 1Gn @)l () =3.
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Fix K <« and choose a point w, €} that satisfies || G,. (w,)|, =3, and let
o, C{1,2,...,n} be so that

sup n/|o. [= K

Then one can find an integer 1 < i, = m with the property that

lo, N .|z k/K.

Fix now 1= r <2 and define the vector

xr,n:( 2 eh)/la-nnnin
hEa,,ﬁn,n

. =1, for all n. On the other hand,

e [ei]i€a,. C 7

and note that ||x,., |

[Ro.Gpan(@n)renll = ™ o [ 2 e (wn) e
= o, A o,
; n(l*Z/r’)lp/K __)w,
as n — oo, This proves (iii). O

So far, we have studied in this section only the restricted invertibility of
matrices with 1’s on the diagonal. Since there are also interesting applications in
which the corresponding matrices do not satisfy this assumption we present now
a variant of Theorem 5.1 that applies in a more general setting.

THEOREM 5.7. For every p=1 .and M <, there exists a constant b =
b(p, M) >0 such that, whenever T is a linear operator on I}, for which | T|, =M

and

then, for every 1 =r =2, there exists a subset 7 of {1,2,...,n} such that |7|= bn
and

n

E SiTe,'

i=1

lip
dezn'?,
P

2 a'Te,

ier

r; b(;]ai ')1/',

for all {a}ic..

Proor. Note first that, by Proposition 3.13, the case 1=p <2 reduces
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immediately to that of matrices with 1's on the diagonal, which is already
covered by Theorem 5.1. Suppose, therefore, that p>2, let B, denote
Khintchine’s constant in L, and put

x=V2B'M"'Te,;; 1=i=n

Let s = (2= |x ") be the square functions of the vectors {x;}{-, and assume
that s =2, s;e;.. Then, for each 1 =i =n,

n 1/2
5= (Sletwr)
<
=Ssup { 2 ce'i(x); 21 l¢
1= 1=

Zél}

=V2B'M".

Thus, by our hypothesis,

V2BIMP 'n'" = f HS_‘, €,
i=1

de
p
=B,|sl,

n lip
=B, (Zl | Si |P>

_ n 1/p
= Bp (\/2 BZMP)(P—I)/P . (2 |Si ‘)

from which one easily deduces that

J

i.e., condition (i) of Theorem 5.2 holds for the vectors {x;}{-, in I]. As in the proof
of Theorem 5.1, we check immediately that also condition (ii) holds with M
replaced by V2 BEM” and p = 1/p. Thus, by using Theorem 5.2, we complete
the proof in the case r = 1. Then, by Proposition 5.3, we complete also the case
1<r=2. (]

n

S ex

de =|s|/V2zn,

1

We conclude this section with an application of Theorem 5.7 to the A,-sets
problem, whether there exists a constant K < such that, for every integer n,
£ >0 and every set of n characters, there is a subset of cardinality = n'"* onto
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whose linear span the L;- and L,-norms are K-equivalent (recall that W. Rudin
[25] gave a positive answer for £ =3). We present here a partial result, a variant
of which was observed before by V. D. Milman and G. Pisier.

Fix n and let {w;}._, be the sequence of the Walsh elements in [Z i.e.

gn

n
w1=2e,-, =2e— 2 é,..., etc.
=

i=2""le

The operator T on [, defined by
Te. = w,/V2™ 1=i=2,

is clearly an isometry and, moreover,

15wl

ViV

1e., V2 T satisfies both conditions of Theorem 5.7. It follows that there exist a
constant b >0 and a subset o, of {1,2,...,n} so that |g,|= b -2" and

=b- S la |V

iSon

> aw/2"|

This statement can be interpreted better in the setting of function spaces. Let
{W.};-: denote the sequence of the usual Walsh functions on [0, 1]. Then the
inequality above implies that, for any n,c >0 and 7 C o, with [n|Zc 2", we
have

" =p|n|/V2Z=Zb-cV2'=b-¢

o],

i€n lEn i€En

i.e., on “large” sums of elements from {W}ie,,, the L;- and L;-norms are
(bc) '-equivalent. Since sets of 2" characters cannot contain A,-sets of cardinal-
ity proportional to 2", one cannot expect to prove that the L;- and L,-norms are
equivalent on {W},c,,.

More generally, it can be derived from Theorem 5.7 that, given a finite set A of
characters on a compact abelian group G, there exists a subset A, of A such that
|Ao| = c¢|Al, for some universal constant ¢ >0, and

2 ay

YEAp

zc ¥ |a, /A"
vYEA

L1(G)

for any choice of {a,},ca,.
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6. Operators on spaces with an unconditional basis

In Section 3 we proved an invertibility theorem for operators acting on
I;-spaces whose corresponding matrix has 1’s on the diagonal. In this section we
present an extenston of this result to the case of operators on spaces with an
unconditional basis. The method used here is completely different and, in some
sense, simpler than that used in Section 3. However, the rank of the “well”
invertible submatrix that we obtain by the present method is not necessarily
proportional to the rank n of the original matrix but only of order of magnitude
n'~c, with ¢ as small as we like. We have not checked whether one can find well
invertible submatrices of rank proportional to n. There is another minor
restriction, namely, that the underlying spaces have non-trivial cotype or,
weaker, than the unconditional basis under consideration satisfy a non-trivial
lower estimate.

Before stating the main result, we recall that the unconditional constant of a

n

basis {e;}'_, is the smallest constant K so that

“; aee| =K - “Z ae,

for any choice of scalars {a;}i-, and signs {&}/-,. Such a basis is also called

B

K-unconditional.

THEOREM 6.1. Forevery K=Z1, M=1,1<r <=, ¢, >0and 1> ¢ >0, there
exists a constant C = C(K, M, r,c,, )<= such that, whenever n=C, X is a
Banach space with a normalized K-unconditional basis {e;};_, which satisfies a
lower r-estimate with constant c,, ie.

) ir

Zc,(Zlai
“

for all {a;}_,, and T: X — X is a linear operator of norm | T || = M whose matrix
relative to {e}'_, has 1's on the diagonal, then there exists a subset o of
{1,2,...,n} of cardinality |o|>n'" for which R, TR, restricted to R,X is
invertible and its inverse satisfies

n

2 ae;

i=1

(R, TR,) | = D.

(R, denotes, as before, the restriction operator defined by R, (2, ae)=
Y- aie, for all {a;}-,.)

The proof of Theorem 6.1 requires a preliminary lemma which is essentially
known.
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LemMma 6.2. Fix mand let p(x)=ZX72, bx' be a polynomial of degree m which
satisfies |p(x)|=1, for 0=x =1. Then

max [ b= (m +3)™

PrOOF. We shall proceed by induction. For m =1, the assertion is trivial.
Suppose now that it is true for some m and consider a polynomial p(x)=
S bx' of degree m + 1 which satisfies | p(x)| = 1, for 0 = x = 1. By integration,
we get that

m+l

> b,-x‘/(i+1)]§l,

i=0

for all 1 =x =1, from which it easily follows that

S bt ((m +2) + 1)~ 1)

i=0

=m+3,

again, for all 0= x = 1. Hence, by the induction hypothesis,

b [[(m+ 1) (m+3)=| b [(m +2)/(i + )= 1)/(m +3)= (m +3)™,

ie.
b |=(m+3)y""; 0=is=m,
and also
b | S 1+ 2 b =1+ (m+ 1D (m +3)"2 < (m + 40, O
i=0

ProoF OF THEOREM 6.1.  Fix the constants K, M, r, ¢, and ¢, and let {¢;}/., and
T satisfy the conditions of the statement. Note that there is no loss of generality
in assuming that K =1, i.e., that {e;}/_, is l-unconditional.

Let (a;,;)i,-1 be the matrix of T relative to the basis {e}/-,, i.e.

n
TeiZEa.;je,'; l=i=n
=

By our hypothesis, a;; =1, forall 1=i =n. Put S = T — I and let (b,;);;-, be the
matrix associated to S, i.e., b, =0 and b; =a,, forall 1= j=n, i#]j.

The assumption that {e;}i-, satisfies a non-trivial lower estimate is needed in
order to select a submatrix of (b;;)i;-, of rank propositional to n which has
“small” entries. More precisely, since
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r
>

M’ =|| Te,

n
' 50:2 tai.i
fes

r
k]

ISENY

for all 1 =i = n, it follows from [13] or [4] that, with 7 = £°/16, there exists a
subset i of {1,2,...,n} of cardinality
Inizn'"7/16

so that

2 |b | = 2 | @i

i€n j€n
j#i

"=(Mijc)/n,

for every i € n. In particular, we conclude that
’b,",’ | é M/C, " nf/',

for all i,jEn.

Take 6 = 1/n"" and let {&},, be a sequence of independent random variables
of mean § over a probability space (), 2, u) taking only the values 0 and 1. For
w €1}, put

n(w)={i€n; &(w)=1},
S(w) = Rn(w)SRn(w)a

and, for [ being a fixed integer so that [ >3r/27%, let (b{}(w));-, be the matrix
associated to the [-power S(w)' of S(w).
We introduce now the following notation. For fixed integers i, j € n, put

Uy ={(, i, i i) €EN1=h <}
and, for y = (i, i), is,..., 4-1,j) €T}, denote
Sy =biubiw by and @, =& &€, &0 6
Then

bl (w)= 2, s,¢y(w),

=

for all w €1}, and thus, by integration,
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M+17 2 [ I5(@) Fdu(w)

ZJ
Q

[ 3 sse@e @)

yY'Elij

bij(w)dp(w)

il

2142

h

=2 b,
h=1

for a suitable sequence {b,},2; of reals. Since

21+2

0= bux"=(M+1),
h=1

for all 0 = x =1 (and not only for the particular choice of x = § made above), we
get, by using Lemma 6.2, that

max 'bh l = (M + 1)21 . (21 + 5)6(!4—1).

1=h=21+2

On the other hand, observe that, for each 1 = h =2/ +2, b, is the sum of all the
products s, - s, for which the union y U y’ contains exactly h distinct integers.
This sum has at most (2[)* - n* summands of the form s, - 5, each of which is
bounded by (M/c, - n”" ). Thus

|b | =@1-M/c, Y - nt72, 1=h=20+2.

We are now able to evaluate the expression 23,27 b,8". We choose an integer m

so that
l/r=m <2/t

and use the first estimate for b, with h > m and the second for b, with
1=h = m. It follows that
21+2 2142

Shet=S b5t + S b8
A=t Aol " 1

=m+

=m- max |b.|+8™"-(21+2) max |bil

m<h =21+

é m(2l . M/C,)zl . nm—Zl-r/r + 8m+1 . (M+ 1)21 . (21 +5)6l+7'

In view of our concrete choice of [, m and 8, we obtain the existence of a
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constant C,, independent of n, so that
2{+2 .
J |bf',’(w)|2du(w) — 2 bhsh =< Cl(l/nl/r + 1/nl/x7)§2Cl/n1/\f’
Q0 h=1

for all i,j € n. Hence

[ 15 1du)= [ 3 1b0)] ditw)

LJEN

IA

W max [ b))
LjEM 0

1/2
=n’- max (J lbf-.',-’(w)Vdﬂ(w))
ij€n [+)
é (2Cl)l/2 . nZ—l/Z\/ 1'.

Since T < 1/16 it follows easily that there exists a constant C,, independent of n,
so that, for n = C,, we have

[ 181 =t

Hence, one can find a point w, in the set

Dz{w eQ; Eg(w)—SInl‘éﬁlnlﬂ}
such that
IS (wo) || =3.
Put

C =21 - max{||S(wo)[l, ]S (@o)[l, ... 1S (wo) (|, 16}

and note that the inverse of R, TR, restricted to R, X satisfies

” (R v(w)TRﬂ(uxl))_l “ = ,Z) ” S(wo)k ”

I
(\ZL

S, 1S

it

u=0

1A

3 SIS I 1S (wn) |

C

A
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Furthermore, since w, € D, it follows that
(@)= 2, &(w)Z 8| nl2z n' V32> n V716,
i€n

Hence, in view of the fact that 7 = £°/16, we conclude that, for n sufficiently
large, we have

In(@y)|>n"".
This, of course, completes the proof. |

Theorem 6.1 can be used in order to prove the following result which, in some
sense, improves Theorem 1.1 from [6].

COROLLARY 6.3. Forevery Kz1, MZ1,1<r<w, ¢, >0 and ¢ >0, there
exists a constant D = D(K, M, r, c,, £ ) < such that, whenever X = X, P X; isa
Banach space with a normalized K-unconditional basis {e;};-, which satisfies a
lower r-estimate with constant c, and the projections P, and P, onto X, respectively
X, associated with the above direct sum, have norms = M, then there exists a
subset o of {1,2,. .., n} of cardinality | o | > n'"* with the property that at least for
one of the factors, say X, the following holds:

(i) {P.e}ico is D-equivalent to {e}ic.,

(ii) there exists a linear projection Q of norm || Q|| = D from X onto [P.e]ic..

Proor. Let {e*}/., be, as usual, the biorthogonal functionals associated to
{e;}_, and notice that, at least for one of the factors, say X, one can find a subset
n of {1,2,...,n} of cardinality |n|= n/2 so that

e Pe =1/2; iEn.
Consider now the linear operator T: [e]ie, — X\, which is defined by
Tei=Plei/efP16i; lE‘r}

This operator clearly has norm =2KM. Therefore, R,T is an operator of
norm = 2K’M on [e]ic, and its matrix relative to {e;};c, has 1’s on the diagonal.
Hence, by Theorem 6.1, there exist a C <= and a subset o of 5 of cardinality
|o|>(n/2)'"* such that ||(R,TR,)'||= C. This already implies that {P;e;}ie, is
2CK*M-equivalent to {e};c,. Furthermore, it is is easily verified that

Q=T -(RTR,)" R,

is a projection of norm = 2CK*M from X onto its subspace [P.e ... O
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7. Non-operator type results

So far, we proved invertibility results for ‘“‘large” submatrices of matrices
which map the unit vectors {e }i-, into vectors {x}/-, of norm one or about one.
The boundedness of the matrix is equivalent to the existence of a corresponding
upper estimate for the vectors {x;}’., while the assertion of restricted invertibility
can be interpreted as the existence of a lower estimate which holds for a subset
{x:}ic, of cardinality | o | proportional to n.

The purpose of this section is to present a quite general situation in which
lower estimates hold without assuming the existence of suitable upper estimates.
In some sense, the main result is an extension of Proposition 4.4 to the present
setting, i.e., without assuming condition (i) there.

THEOREM 7.1. For every 1 <p =2, K < and ¢ >0, there exists a constant
d = d(p, K, ¢)> 0 such that, whenever {g}'_, and {h.}/-, are normalized sequen-
ces in L,, respectively L., for which

(D) Iz bkl = K- [ b 7)™, for any choice of {b.}i-,,

and
() g, h)i=c, forall 1=Zi=n,
then there exists a subset o of {1,2,...,n} so that |o|=dn and

2 ag

o

za(Zlar)”,

for all {a;}ic..

The first step in the proof is to pass from the function space framework to a
sequence space one. A connection between these two settings is given by the
following very simple lemma.

LEmMMA 7.2. Fix 1 =p =« and let {g}-, and {h} ., be normalized sequences
of functions in L, respectively L., which satisfy the conditions (1) and (2) of
Theorem 7.1.

Let {e;};-, denote the unit vectors in I, and, for 1 =i =n, put

=§<g*””|<<gf,’h>>y é-

Then, for any choice of {a;}-,, we have

|5, K“Ea'ug.,w I,
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ProoF. By linearization we get, for any choice of {a;}/-,, that

i=1

=(3|5 et &R ])”

=sup{

=sup{| (a8 g"25”> Sinr=1)

S oy B | S <
“ }i—la*<g”h))‘<gi,hi>‘\’,';lb}! :1}

=1

<<
<k|Saniil,
We need also the following lemma.

LemMA 7.3. For every 1 <r<p =2, there is an a« = a(p,r)>0 such that,
whenever {x;}i., is a sequence of vectors in I}, for which

ga;x,- l;cglai%ack””'(gkai )')lh,

for some ¢ >0, k and all {a;}i.,, then there exists a subset 7 of {1,2,...,k} of
cardinality |7|Z k/2 so that

Eax

€T

5 (3ar)”

ier

for any choice of {a}ic..

ProOF. We use again an exhaustion argument. Suppose that the assertion is
false. Then one can construct subsets 7, D7D - D7 of {1,2,...,k} with
|7 | = k/2 and vectors {y}i-, such that

yi= 2 byx, lyl,<c/4 and X |b;P =1, 1=isl
jETi JET

For those j& 7,; 1 =i =, we put b;; = 0. The procedure is stopped after, say, m
steps when the set

'Tm+1={je'rm 5 2 |bi.ilp <1}
i=1

has cardinality < k/2. An easy computation shows that
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k=2m.

Let now {4 }/~, be a sequence of independent p-stable random variables over
a probability space (2,2, u) which have norm one in L,(, 3, u). Then, by our
assumption (with a to be determined later),

R

S|

> M

p

du (o)

=L ||(2 (E ¢,(w)b,,)
2¢.(w)b.,~du(w) aek | (3

i=1 i=1

k m 1/p )
;CZ( b.'vj‘p> _a'C'k”r

m

S wm) dww)

ub(%(Z10r)")

ji=

However, as readily verified, we have

s

b l" =2,

i

for all 1 =j = k. Thus
k m
m"" k1> Y by P27 2" k||,
=1zt

g m/zl/p'_22/p o kl/p’ . ml/p .” w] .,

ie.
1>27 =27 -,
which is contradictory if « if chosen small enough. O
ProorF oF THEOREM 7.1. Fix 1<p=2, K< and ¢>0, and consider

sequences {g}/-, and {h}i., which satisfy the conditions (1) and (2). Choose
1 <r<p and let a = a(p, r) be given by Lemma 7.3.
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By (1), the matrix {(g, h;)}},-, has the property that
n Wip n "
(S i@ mor) " =sup{ S bt mi 31 =1) =k
i= i= i=

for all | =i = n. Thus, by [13], one can find a d, = d\(p, . K, ¢) >0 and a subset
o, of {1,2,...,n} such that |o,|=d,n and

( > Rgnh;‘ﬂp)”péa c/12B,,

j€E;
JEI

where B, denotes the constant in Khintchine’s inequality in L,..
Let {e:};c., and {e*},c.., stand for the unit vectors in [}, respectively I\, put

x.»=]_; <g.v.h,->‘—<<§’jt‘—>>, € i€a,

and, for each tuple of signs € = (g;);c., €{— 1, + I}, consider the vector

u(e)= D, ge*.

=

Then, for each i € o,, we have

(oule) = 3 e(geh) B = (g b+ (o),

where

vi(e)= };{1 g, ) Kg. h)|

J#i
By Khintchine’s inequality in L,., we get that

J. <,C2| v (e) ')W de = (i;, S (. h,-)", dg),,,,

jEo
£

B (S(Sremr) )"

ji€o
jAR

jFEi

A

A

Sa-c-|a]"2.
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Consider now the set

ur
') <w@-c-lo

€ = {(Si)iem E{_l, +1};""; ( 2 ‘v,(e)

i€u|

1/r'/4}

and observe that
|€[=3- 2114,

Therefore, by using [27] or [29], we conclude the existence of a subset o of o of
cardinality k =|0.|=|0,]/2 so that, for each tuple (& ), there exists an
extension (g;)ic. € €.

Fix scalars {a;};c.,, write @; = b, + ic, with b, and ¢, reals, for all j € 0>, and
choose signs (8));c.. and (8");c. so that b8 =|b;| and ¢;6;=|¢,|; j € 0.. By the
above choice of o, one can find in & extensions &' = (&}),e, and £” = (&')),e., of
(6%);ca, respectively (07),c... It follows that

2 aiX;

j€Ea2

2

1

= <2 a,-x,-,u(e’)-—iu(s”)>«
=12 a,-<x,-,u(s')—iu(s")>‘
=\ 2 (b,+ic,-)<e:—ie';)l<g,-.h,>1{— 2 a(v(e') iy (e")

v

e Zlei(Zla) [(Zloer) (Zler) ]
c- D, \a,\—a-c}(r,|”"-<i§m!a, ’)”,/2

jE o2

1r
¢S la,.|-a-C'k”"‘(Z | a, ) ,
i€a: [ =ep)

i.e., the conditions of Lemma 7.3 are satisfied. Consequently, there is a subset 7

v

Y

of o, of cardinality
Tz k2= d\n/4
so that

2 ax

(=23

I/p
=< p
, 4 (2“"') ’

iCr

for all {a;}ic.. The proof can be now completed by using Lemma 7.2. O
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The following immediate consequence of Theorem 7.1 describes the most
common situation when this result is used in applications.

CoOROLLARY 7.4. Forevery 1<p=2andc >0, there existsad = d(p,c)>0
so that, whenever {f.}i-: is a normalized sequence in L, for which one can find
mutually disjoint sets {A;}/-, with the property that

J |f Pdu = ¢,
Aj

forall 1 =i = n, then there exists a subset o of {1,2, ..., n} such that || = dn and

Stz (g 1ar)"

=34 i€o

for any choice of scalars {a.}.c,.

Proor. Take g =f, h =|f I""(sgnf)xa and h, =k /| h|,; 1=i=n, and
apply Theorem 7.1. 0

8. Remarks on some estimates

In Sections 1 and 3, it was proved that, for every 1 < p <, there is a function
8, (¢) such that, whenever S is an operator on [} of norm || S|, = 1 whose matrix
relative to the unit vector basis of /; has (’s on the diagonal, then, for some
subset o of {1,2,..., n} of cardinality |o | = 8, (e)n, the inequality

IR.SR, |, <&

holds. As usual, R, denotes the restriction operator. Clearly, from the definition
of 8,(¢) it follows that

S (e-e)Z8,(e) 8,(e")
and, therefore, also that
8,(e)> e,

for some k = k(p) and all 0 < £ <3. This implies that all the estimates obtained
in Section 4 related to finite-dimensional L,-problems are of a polynomial
nature.

Notice that the method used in Section 3 to obtain 8,(¢) does not yield
directly a function satisfying the above condition. We shall show in what follows
how to proceed more effectively. We present in detail only the case p =2. The
case of a general p, which is similar, is left to the reader.
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Since the considerations below involve different norms for a linear operator
W:R™ —R", we shall denote by | W||,_., its norm when W is considered as an
operator from [} into [;. Instead of || W|,., we shall continue to use the
notation || W|,.

We also recall that the matrix (b;;)i~. ], corresponding to the operator W, is
defined by

n
Weizzbi.jej; I=sis=m
i=1

ProposiTiON 8.1. There exists a constant C <o such that, whenever
0<8 <1, nisan integer, {}]-, is a sequence of independent random variables of
mean 8 over some probability space (,3, u) taking only the values 0 and 1,
m =[8n] and T: 17— 17 is a linear operator of norm | T|,=1 whose matrix
relative to the unit vector bases is denoted by (a;;)i-i}-, then

)

The proof of Proposition 8.1 requires the following lemma.

i i §(w)a;; ® € Hz—-ldﬂ(w)§ C5'"* m'2,

i=1j=1

Lemma 8.2.  Forevery linear operator T: 17— I} and every € >0, there exists a
subset  of {1,2,...,n} so that

() [m=Ko(|ITlei/e)
and

(i) |R,Tlh<e.

PrROOF. As we have already seen before, it follows from Grothendieck’s
inequality and Pietsch’s factorization theorem that there exist non-negative reals
{A;}}-1 such that

(1) =AD" =Ko || Tl
and

(2) 2;'=1 (E:":x a.',jbi )2/)\? =37, | b; Iz,
for any choice of {b;};. Then, in order to complete the proof, it suffices to take

n={1=j=n;\zZe} O

ProoF oF ProrosiTION 8.1, Fix 0 < 8 <1 and an integer n, take m =[8n] and
let T: 17— 13 be a linear operator of norm = 1. Let {£})-, be a sequence of
independent random variables of mean & over a probability space (2,3, u)
which take only the values 0 and 1. Choose now two independent copies
(@, 3, u') and (Q",3", ") of (Q,3,u) and let {¢}, and {&]}}., be two
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sequences of independent random variables of mean Vs over (V,3, ),
respectively (1", %", u”), which again take only the values 0 and 1.

Fix o' €Y and apply Lemma 8.2 with £ = 8" to the operator T,: 17— I}
which is determined by the matrix (£}(w")a;; )it [-, where (a;; )7, j—: is the matrix
corresponding to the original operator T. It follows that there exists a subset
n(w’) of {1,2,..., n} such that

@ ()= Ked™"|| T, [E-
and

(i) | Rygory Turll < 8"

For o' €Y and 0" €, we shall set

T)={1=j=n¢e)=1}; (@)={l=j=n;{(")=1}
and
70, 0")=1"(0")N 1"(w").

Then we get that

I= Jﬂ 22 gj(w)a,-_,»ei ®ei

-1,
1.

dp(w)
21

n

2 3 08 @0 De

l dul(wl)d,‘bu(wu)

2

= '

“ R ‘r"(w”)Tw'||2—>ld“,(a)’)dl-la"(w”)

A
2
—

o IR Tk + I R oo Tolb-n)dp (@) dp (")

172

"Ry T ) dp (") dpp" (")

Tw'”2+|7(0),, (1)”)

=[ [ n@ynr

=[ [ ([ 2 &) oo en

jE€n(w?)

l/2> d,u'(w’)dp."(w")

= 5% [ In@)imdn@) s ([ |3 ew)enondn o))

éKGS”"j | T foeidin (@) + 8702,
Q

However, by the estimate for I(7) obtained in the proof of Proposition 1.10
together with Proposition 1.8, we conclude the existence of a constant A <
such that
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n

Z &

j=1

;CzicieiEl;’ ilc,—(zgl}
=

j=1

j | Tor oo e’ (@') = 8 max {

=8Am'”
=8A(8n)".
This, of course, completes the proof. ]

The proof of Proposition 1.10 can now be modified by using Proposition 8.1 in
order to evaluate there the expression I(7). The outcome of this modification is
that the expression (log(1/8)) "7, appearing in the statement of Proposition 1.10,
is replaced by 8"°. Consequently, the function 8,(¢), which was defined in the
introduction of this section, satisfies the following inequality:

CoroLLARY 8.3. There exists a constant ¢ >0 such that
8.(e)=ce®,

for all 0<e <1.

REMARK. In a similar manner, one can show that, for each 1 = p = «, there
are constants d and p >0 so that

8, (e)=de”; 0<e<l.

Proposition 1 can be also used to improve an estimate obtained by B. S.
Kashin [15] for the upper triangular projection A" of a n X n matrix A. Before
stating our result, let us introduce some additional notation. If 7 is a permuta-
tion of the integers {1,2,..., n}, i.e., if 7 is an element of the symmetric group
A =Sym(n), endowed with the normalized invariant measure A, and A =
(a.;)i;-1 is a matrix acting as a linear operator on R", then we denote by A, the
operator corresponding to the matrix (@ .¢))ij=1-

THrEOREM 8.4. For every 1= q <2, there exists a constant C, < such that,
whenever A is a linear operator on 13, then

[ 1Ay a2 G

ProoF. Fix 1=4q <2 and an integer n, and assume, for sake of simplicity,
that n =2’ Next, by proceeding as in [15] and writing the upper-triangular
projection of A as an element in the projective tensor algebra [ 1%, we get
that
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oh-1

| 2R
14+ = 2 z RT».zk—lARu.:ka
j=1 k=1

where
W ={5(k=)n27" =j<kn2™"},

forall 1=k =2" 1=h =1 Since, for each 1 =h =1 we clearly have

‘]'2 R... .Ale =
k=1 2

it follows, by interpolation with § satisfying 1/g=38/1+(1-3)2 (ie.
¥ =2/q — 1), that

Zhl

2 R‘rnk IA Rn.u

[CHNSED)

2—q

o 9
§(2“2R'ﬂ-2k |A R"hlk“ )
1 2h-1
=[3 (SR AR AT

for any choice of 7= € A. Hence, by averaging over w € A, we get that

[ 1Ay tetrms[ 35 [ 1R ARt @) |- 14K

=[3 (S 1Ak [ 1R AR @) ] 141

On the other hand, by Proposition 8.1 applied to 7 satisfying |7|=2""n and
8§ =2";1=h =1 we have that

J

2 2 alle®el

ierjenr (7)

22 ae®e

€7 €

d/\(7r)

-]

= Average [

sec,nhlel=Il]
—1

< C2vh/8(2—hn )1/2“A ”2

The proof can now be completed by using the above fact with 7= 72(;
Ish=sl1sk=2"" n
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Added in proof. K. Ball (private communication) has recently found a nice
and simple argument to prove that the assertion of Theorem 1.2 directly implies
that of Theorem 1.6.
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